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Abstract

n-Lie algebra structures on smooth function algebras given by means of multi-ditferential oper-
ators, are studied and their canonical forms are obtained.

Necessary and sufficient conditions for the sum and the wedge product of two n-Poisson structures
to be again a multi-Poisson are found. 1t is proven that the canonical n-vector on the dual of an
n-Lie algebra g is n-Poisson iff dimg < n + 1.

The problem of compatibility of two n-Lie algebra structures is analyzed and the compatibility
relations connecting hereditary structures of a given n-Lie algebra are obtained. (n + 1)-dimensional
n-Lie algebras are classified and their “elementary particle-like” structure is discovered.

Some simple applications to dynamics are discussed. © 1998 Elsevier Science B.V.
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1. Introduction

The concept of n-Poisson structure (Nambu—Poisson manifold in terminology by Takhta-
jan) is a particular case of that of n-Lie algebra. To our knowledge the latter was introduced
for the fist time by Filippov [7] in 1985 who gave first examples, developed first structural
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concepts, like simplicity, in this context and classified n-Lie algebras of dimensions n + 1
which is parallel to the Bianchi classification of three-dimensional Lie algebras. Filippov
defines an n-Lie algebra structure to be an n-ary multi-linear and anti-symmetric operation
which satisfies the n-ary Jacobi identity

(e, ... unl, v, vl =1lur v, oo vpmtlua, oo gl
+luy, (U2, v, oo Vp— ] 3, .. g+
+[ulw-"7un—l’[uﬂvv]v"'-vﬂ*l]]' (11)

Such an operation, realized on the smooth function algebra of a manifold and additionally
assumed to be an n-derivation, is an n-Poisson structure. This general concept, however, was
introduced neither by Filippov, nor, to our knowledge, by other mathematicians at that time.
It was done much later in 1994 by Takhtajan [23] in order to formalize mathematically the n-
ary generalization of Hamiltonian mechanics proposed by Nambu [20] in 1973. Apparently
Nambu was motivated by some problems of quark dynamics and the n-bracket operation
he considered was

of;

Xj

{fio. ., fu} =det . (1.2)

But Nambu himself as well as his followers do not mention that n-bracket (1.2) satisfies the
n-Jacobi identity (1.1). On the other hand, Filippov reports (1.2) in his paper among other
examples of n-Lie algebras. It seems that Filippov’s work remained unnoticed by physicists.
For instance, Takhtajan refers in [23] to a private communication by Flato and Fronsdal
of 1992 who observed that the Nambu canonical bracket (1.2) satisfies the fundamental
identity (1.1).

In this paper we study local n-Lie algebras, i.e. n-Lie algebra structures on smooth func-
tion algebras of smooth manifolds which are given by means of multi-differential operators.
It follows from a theorem by Kirillov that these structure multi-differential operators are of
the first order. We call n-Jacobi a local n-Lie algebra structure on a manifold. In the case
when the structure multi-differential operator is a multi-derivation one gets an n-Poisson
structure. So, n-Poisson manifolds form a subclass of n-Jacobi ones. The main mathemati-
cal result of the paper is a full local description of n-Jacobi and, in particular, of n-Poisson
manifolds. This is an n-ary analog of the Darboux lemma. In what concerns n-Poisson
manifolds the same result was also recently obtained by Alexeevsky and Guha [1]. Our ap-
proach is, however, quite different and, maybe, better reveals why n-Poisson and n-Jacobi
structures reduce essentially to the functional determinants (1.2) (Theorems 4.1 and 5.1).

An important consequence of the n-Darboux lemma is that the cartesian product of two
n-Jacobi, or two n-Poisson manifolds does not give a manifold of the same type if n > 2.
Possibly this fact may explain the remarkable inseparability of quarks. This possibility sug-
gests to investigate better the relevance of local n-Lie algebra structures for quark dynamics.
The structure of (n + 1)-dimensional n-Lie algebras which is described in Section 6 seems
to be in favor of such idea.

It was not our unique goal in this paper to describe local structure of local n-Lie al-
gebras. First, we tried to be systematic in what concerns the relevant basic formulae and
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constructions. Second, possible applications of the developed theory to integrable systems
and related problems of dynamics are illustrated on some examples of current interest.

More precisely, the content of the paper is as follows.

In Section 2 the necessary generalities concemning n-Lie algebras and their derivations
are reported. A new point discussed there is the concept of compatibility of two n-Lie
structures defined on the same vector space. Two compatible structures can be combined to
get a third one. This is why this concept seems to be of a crucial importance even tor the
theory of usual. i.e. 2-Lie, algebras. Fixing a number of arguments in an n-Lie bracket one
gets new multi-linear Lie algebras of lower multiplicities, called hereditary. We deduce the
compatibility relations tacking together hereditary structures of a given n-Lie algebra.

Generalities on n-Poisson manifolds are collected in Section 3. There we introduce and
discuss such basic notions related to an n-Poisson manitold as the Casimir algebra. Casimir
map and Hamiltonian foliation. Itis shown that n-Poisson structures allow for multiplication
by smooth functions if n > 3.

The main structure result regarding n-Poisson structures (Theorem 4.1) is proved in
Section 4. It tells that the structure n-vector of an n-Poisson structure is of rank n (de-
composable) if n > 2. This leads directly to the n-Darboux lemma: Given an n-Poisson
structure, n > 2, on a manifold M there exists a local chart x1, .. ... Xp. m=dmM > n,
on M such that the corresponding n-Poisson bracket is given by (1.2). Two consequences
of this result are worth mentioning. First, the n-bracket defined naturally on the dual of an n-
Lie algebra V is not generally an n-Poisson structure if n > 2. This is in sharp contrast with
usual, i.e. n = 2, Lie algebras. However. we show that it is still so for n-dimensional and
(n+ 1)-dimensional n-Lie algebras. By this and some other reasons it is natural to conjecture
that n-Lie algebras with n > 2 are essentially n-dimensional and (n + 1)-dimensional ones.
Finally, in this section we deduce necessary and sufficient conditions in order the wedge
product of two multi-Poisson structures be again a Poisson one.

The n-Darboux lemma for general n-Jacobi manitolds with # > 2 is proved in Section 5.
Theorem 5.1 and Corollary 5.7. The key idea in doing that is to split a first order multi-
differential operator into two parts similar to the canonical representation ot a scalar first
order differential operator as the sum of a derivation and a function. An n-ary analog of the
weli-known Bianchi classification of three-dimensional Lie algebras is given in Section 6.
An exhaustive description of (n + I)-dimensional n-Lie algebras was already done by
Filippov [7] by a direct algebraic approach. Our approach is absolutely different and based
on the use of the natural n-Poisson structure on the dual of an (n + |)-dimensional n-Lie
algebra. 1t allows to get the classification in a very simple and transparent way and. what is
more important, to discover what we would like to call an elementary particle-like structure
of (n + [)-dimensional n-Lie algebras. More exactly, we show that any such algebra is
a specific linear combination of two simplest n-Lie algebra types realized in a mutually
compatible (in the sense of Section 2) way. A number similar to the coupling constant
appears in this context. In this section we describe also derivations of (n 4 1)-dimensional
n-Lie algebras and realize the Witt (or s/(2, R)-Kac-Moody) algebra as a 2-Lie subalgebra
of the canonical 3-algebra structure on R?. In the concluding Section 7 we exhibit on
concrete examples some simple applications of #-ary structures to dynamics. First. we use



144 G. Marmo et al. / Journal of Geometry and Physics 25 (1998) 141-182

the Kepler dynamics to show how the constants of motion can be put in relation with multi-
Poisson structures. Second, alternative Poisson realizations of a spinning particle dynamics
I" are given by using ternary structures preserved by I”. In a separate paper applications to
dynamics of the developed formalism will be discussed more systematically.

The multi-generalization of the concept of (local) Lie algebra studied in this paper is
not, in fact, unique and there are other natural alternatives (see [9,19,15,27]). All these
generalizations are mutually interrelated and open very promising perspectives for particle
and field dynamics.

In this article we follow Filippov in what concerns the terminology and use n-Lie alge-
bra instead of Takhtajian’s Nambu—Lie gebras. The reason is that arabic al-gebre became
ethymologically indivisible in the current mathematical language , like ring, group, etc. So,
it would be hardly convenient to use n-gebra together with the indisputable n-ring.

2. n-Lie algebras
We start with some basic definitions.

Definition 2.1. An n-Lie algebra structure on a vector space V (over a field K) is a multi-
linear mapping of V x --- x V(n times) to V such that for any u;, v; € V, the n-Jacobi
identity (1.1) holds.

Remark 2.1. It is convenient to treat the ground field K as the unique 0-Lie algebra and
a linear space supplied with a linear operator as a 1-Lie algebra.

If an n-Lie algebra is fixed in the current context we refer to the underlying vector space
V as the n-Lie algebra in question (as it is common for the usual Lie algebras). However,
sometimes we need consider two or more n-Lie algebra structures on the same vector space.
In such a situation we use P(uy, ..., u,) instead of [, ..., u,]. This notation appeals
directly to the n-Lie algebra in question and is more flexible than the use of alternative
bracket graphics.

Example 2.1 [7]. Let V be an (n + 1)-dimensional vector space over R supplied with an
orientation and a scalar product (-, -).

The n-vector product [vy, ..., v} of vy,..., v, € V is defined uniquely by require-
ments:
1. [v1,..., vs] is orthogonal to all v;’s;
2. e, -, vall = det [|(ui, w13
3. the ordered system vy, ..., vy, [v1, ..., v,] conforms the orientation of V.

Let P and Q be n-Lie algebra structures on V and W, respectively. Then their direct
product R = P @ Q defined as



G. Marmo et al./ Journal of Geometry and Physics 25 (1998) 141-182 145

R((vi, wr), .o (Ug, wp)) = (P ), Qwn. ..o wy))

with v; € V, w; € W is an n-Lie algebra structureon V@ W.
A central notion in the theory of n-Lie algebras is that of derivation [7].

Definition 2.2. A linear map D : V — V is said to be a derivation of the n-Lie algebra V
ifforany u(.....u, €V

D[m,...,u,,]:Z[ul,...,Du,-,...,u,,]. 2.1)
i=1
Fixing arbitrary elements u|, ..., u,_) € Vone getsamapv — [uy, ...uy—, v] which
is a derivation of V as it follows from the Jacobi identity (1.1). Such a derivation is called
pure inner associated with u|, .. ., un_1. It will be denoted by ad,,, ... 4, , or Py, . .4, , for

the n-Lie algebra structure P in question. Linear combinations of pure inner derivations will
be called inner derivations (of P). Note that the concepts of inner and pure inner coincide
for n = 2 and that Hamiltonian vector fields are inner derivations of the background Poisson
structure. Following the standard terminology we, sometimes, shall call outer, derivations
of V which are not inner just to stress the instance of it.

Proposition 2.1. Derivations of an n-Lie algebra form a Lie algebra with respect to the
standard commutation operation and inner derivations constitute an ideal of it.

Proof. Let Dy, D, be derivations of the bracket |-, .. ., -]. Then, obviously,
Di(Da(luy. ... ux)) =Y ([....Diuti..... Do, .|
i<j

+ Y lur.....DiDaui. ., gl (2.2)
i
Therefore,
[(Dy. D)1 unD) = D _lur. ... [Dr. Dalui. .. un). (2.3)
i
The first assertion in the proposition is so proven. The second assertion follows by observing
that for a derivation D

[D,ady,. u, Ju=Dur, ..., up—1,ul) —lur.....uy—1, Du]
= Z [ui,....Duj, ... un—y, ul
i<n—I1

So, in virtue of (2.3) one has
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[Dv adu|....u,,,|]({vlv MR ] Un])

Z Z[vl,...,[ul,...,DuS,...u,,_l,v,-],...,v,,]

i s<n—1

= Z (Z[vl,‘..,[ul....,Dus,...u,,|,v,-],...,vn])
s<n—I1 i

= Y adu,..Duyouy (V1 VD) (2.4)
s<n-—1

[D.ady, .., 1= Y adu...Duy....t- 2.5)

[D, Pul....u,,_l] = Z Pu1 ..... Dug,....llp— - a (26)

By putting D = Py, . .y,_, in (2.6) one gets the commutation formula for pure inner
derivations

..... u,,ﬁ]] = Z Pul,....[v|.....v,,_x,ui],“..u,,_l . (27)

Note also the following relation in the algebra of inner derivations of P which is due to
skew-commutativity of the left-hand side commutator in (2.7):

A description of the derivation algebra of an (# 4+ 1)-dimensional n-Lie algebra is given
in Proposition 6.6, see also [7]. Various outer derivations of an “atomic” four-dimensional
3-Lie algebra are presented in Exampie 6.1.

While the above results are just straightforward generalizations of known elementary
facts of the standard Lie algebra theory the following simple observation (due to Filippov)
is a very important new peculiarity of n-ary Lie algebras with n > 2.

Proposition 2.2. Let P be an n-Lie algebra structure on V. Then for any uy, ..., u; €

V, k<n, P, . 4 isan (n — k)-Lie algebra structure on V.
Proof. 1t is sufficient, obviously, to prove this result for k = 1 only. But in this case one
can see easily that the Jacobi identity for P, is obtained from that of P just by putting in it

Up = Up_1 = U. O
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Example 2.2. If P is the n-vector product structure of Example 2.1, then the (n — k)-
Lie algebra structure P, _,, on V is the direct product of the trivial structure on § =

Span{uy. ... ux) and the (n — k)-vector product structure on S with respect to the scalar
product

(-,) = A(, DI A= (volg(uy, ..., uk))l/(nfk).
on S*.

Multi-Lie structures P, . ,, obtained in this way from P will be called hereditary (with

respect to P) of order k. The fact that these structures belong to the same family implies
mutual compatibility of them, an important concept we are going to discuss.

With this purpose we need first the following analog of the Lie derivation operator. Let
Q:Vx---xV — Vbe a k-linear mapping and 9 : V — V be a linear operator. The
d-derivative 3(Q) of Q is also a k-linear map defined as

[3(O)N(uy. .... up) = 9(Q(u). . ... uk))—ZQ(ul ,,,,, tj, ... Ug).

w(P)=0foranyu;,....u; €

V.
Example 2.3. Ifk = 1, i.e. Q is alinear operator on V, then 8(Q) = [3, QI.

Sometimes it is more convenient to use L, instead of d for the 9-derivative. An instance
of it 1s the formula

Ly 1] =ty (2.8)
where 1, for u € V denotes the insertion operator, i.e.

L () uy. . ... 1) = QQu,uy, ... ug_1). (2.9)
The proof of (2.8) is trivial.

Definition 2.3, Two n-Lie algebra structures on V are said to be compatible if for any

Pu]“...u,,,l (Q) + Qu1 ..... Up—1 (P) =0. (2.10)

Remark 2.2. If V = C®(M),n = 2 and P and Q are two Poisson structures on M, then
they are compatible in the well-known sense of Magri [17] (see also [5,6,13]) iff they are
compatible in the sense of Definition 2.3. It is not difficult to see that in such a situation
condition (2.10) is identical to the vanishing of the Schouten bracket of P and Q.

Example 2.4. For n = 1 the compatibility condition is empty. In fact, in this case P and
Q are just linear operators and

P(Q)+ Q(P) =[P, Q1 +[0Q.P]=0.
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The following proposition gives a possible interpretation of the notion of compatibility.

Proposition 2.3. Let P and Q be n-Lie structuresonV. Ifa, b € K, ab # 0, thena P +bQ
is an n-Lie algebra structure iff P and Q are compatible.

Proof. The following identity is due to linearity of the Lie derivative expression I (R) with
respect to both / and R:

@P +bQu...atn (@P +5Q) = Pyy .y (P) +abPuy. ., (Q)
+abQu,..un (P) +0°Quy ...ty ()
It remains now to apply interpretation (2.8) of the Jacobi identity. a

Example 2.5. Let Abe an associative algebra. For a given M € A define a skew-symmetric
bracket [-, -]y on A by putting

[A,Bly = AMB —BMA, A ,Be A 2.10

It is easy to see that this, in fact, is a Lie algebra structure on .A. Moreover, for any
M, N € Astructures [-, -]y and [-, -]y are compatible. This follows from the fact that

e + 1, Iv = [y Imew.

Corollary 2.1. Any two first order hereditary structures P, and P, of an n-Lie algebra P
are compatible.

Proof. In fact, according to Proposition 2.2, P, + P, = P,4, is an (n — 1)-algebra struc-
ture. O

On the contrary, hereditary structures of an order greater than 1 are not, in general,
mutually compatible. It can be seen as follows.

Denote by Comp(P, Q; uy, ..., u,_1) the left-hand side of the compatibility condition
(2.10). Then a direct computation shows that

Comp(Py y, Py up, ... ug-3)= PP(u,u,u] ..... Up_zawhz T Pw,P(u.v.ul ..... Up_3.2)

+ PP(w.z,u| ..... Up_3.U)V + Pu,P(w.z.u] ..... Up_3.U)"

In particular, for u; = u we have

Comp (Py .y, Py s u,u2, ..., up3) = Pu.P(w,z,u,uz....u,,_3,v) = QQ(w.z,ug...,u,,_3,v)

with 0 = P,. Now one can see from an example that Q gy z.us....u, 4.v) 1S generically dif-
ferent from zero. For instance, if P is the n-vector product algebra, then Q = P, is isomor-
phic to the direct sum of the (n — 1)-vector product algebra and the trivial one-dimensional
one. Then Qo z.us....u,_3.vy # O for linearly independent w, z, uz, ..., u,—3, v belong-
ing to the first direct summand. However, second order hereditary structures are subjected
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to another kind of relations deriving from that of compatibility. To describe them it will be
convenient to introduce a symmetric bilinear function Comp(P. Q) defined by

Comp(P, QY(uy, ..., un—1) = Comp(P, Q. u,...., Up—1). (2.12)

By definition Comp(P, Q) is an (n — 1)-linear skew-symmetric function on V with values in
the space of n-linear skew-symmetric functions on V. By this reason we have, in particular,

Comp(Py iy v, Puvw z) = Comp(Py . Py;) + Comp(Py . Py )
+ C()mp(Pu'.Lu Py.-) + Comp(Py .. Py2).

Note now that two second order hereditary structures of the form P, , P, - are compatible
because they can be regarded as first order hereditary structures of the (n — 1)-Lie algebra
Py. By this reason the above equality reduces to

C()mp(PLl.I?’ Pw.:) + Comp(Pu.:- Pu,»,v) =0. (2.13)

Identity (2.13) binding second order secondary structures tells that the compatibility con-
dition between P, , and P, - depends rather on bivectors u A v and w A z than on vectors
u. v and w, z representing them, correspondingly.

Similar relations binding together kth order hereditary structures can be found by gener-
alizing properly the above reasoning. With this purpose we need to develop a suitable nota-

tion associated with a fixed n-Lie algebra structure P on V. Let vy, ..., Ve Wi e, wi €
V., i=1,..., k.
Let us define the symbol (v, ....v|wy, ..., uyg) by
(vr..... velwr, L, wey Uy, .. Up—k—1)
= C()mP(PvI.....vks Pw] ..... wes W1oon o Hp—k—1).
So, (v, ..., vlwy, ..., wy) is a skew-symmetric (n — k — 1)-linear function on V with val-

ues in the space of (n — k)-linear skew-symmetric functions on V. Moreover, it is symmetric
with respect to v and w, i.e.

{(v1,..., velwr, ..o, we) = (W .., wWrlvy, L, vg) (2.14)
and skew-symmetric with respect to variables v;'s as well as w;’s. If I = (i1, ..., ip) is
a sequence of integers such thati; < ... < i,, then (v, w); stands for the sequence of n

elements of V such that its sthterm is v if s € I and w, otherwise. A similar meaning has the
symbol (w, v);. Forexample, if k = 5and I = (1, 3), then (v, w); = (v1, w2, v3, w4. ws),
(w, v); = (wy, v2, w3, vg, vs). Define now the following quadratic function:

Ci,.velw, . w) = Y (W w)l(w.v)p). (2.15)
Li=1

Proposition 2.4. Foranyvy,..., v, w(,...,wg € V. n >k, it holds

Cvy,.... wlwr, ..., wi) =0. (2.16)
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Equality (2.16) is called the kth order compatibility condition.

Remark 2.3. Corollary 2.1 is identical to (2.16) for k = 1 while formula (2.13) to (2.16)
fork = 2.

Proof of Proposition 2.4. Tt goes by induction. Corollary 2.1 allows to start it. Supposing
then the validity of (2.16) for & for all multi-Lie algebras, we observe that

Cxt,....xk, ul¥1eeoe, Vi ) =0 2.17)

for any xj. ..., Xk, ¥1,..., Y, 4 € V. In fact, this condition coincides with the kth order
compatibility condition for (n — 1)-Lie algebra P,. In particular,

Cvr, ..oy Uk, Vil + Wign w1 oo, e Vig1 + wier) = 0. (2.18)

On the other hand, it is easily seen that

Cr, ooy Uk, Vgl + W1 Wi, oo, Wiy Uk + Whet1)
= Z (v, w)r, Ve + wegr|(w, V)7, Vigr + Wita),
Lij=1

where (v, w); has the same meaning as in (2.15) and ((v, w),, x) denotes the sequence
that becomes (v, w); once the last term x is deleted. Multi-linearity of the symbol {...]|...)
allows to develop last expression as the sum of terms of the form {((v, w);, x|(w, v);, y)
with x, y taking independently the values vi4 1, wi+1 . After that it remains to observe that
the kth order compatibility condition for the algebra P, gives

> (w,w)p, xl(w, v)p, x) =0 (2.19)
1.i=1

and

Cp, .o Uegrlwi, ooy WetD)

= Z (v, w1, V1 (W, V)1, Wit 1)

Li=1

+ Z (v, w)y, wegq[(w, V), Vet1). d
Lij=1

Example 2.6. The explicit form of the third compatibility condition is

Comp(Pm.vz.v;s Pwl.wz,w3) + Comp(Pvl'vz.wgs PlU],wg,U})
+Comp (PU],wz.UJ7 Pw].vz,wg) + Comp(Pvl,wz.wgv Puq,vg.v_q) =0

The second order compatibility conditions provide some necessary conditions for the
following natural question:

Whether two given n-Lie algebra structures Q and R come from a common (n + 1)-Lie
algebra structure, i.e. whether Q = P,, R = P, for an (n + 1)-Lie algebra P and some
u,veV’
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Corollary 2.2. [fn-Lie algebra structures Q and R are first order hereditary foran (n+1)-
Lie algebra, then

Comp(Qu.. R-) + Comp(Q-,R,) =0 VYw,zeV. (2.20)

3. n-Poisson manifolds

The concept of rn-Poisson manifold generalizes that of Poisson one (n = 2) just in the
same sense as n-Lie algebras do with respect to Lie algebras. It was introduced by Takhtajan
in [23]. Filippov [7] in his pioneering work gives an example (see Example 3.1) which turns
out to be locally equivalent to the general concept in virtue of an analog of the Darboux
lemma for n-Poisson structures. This analog was found recently by Alekseevsky and Guha
{1]. Below we present a simple purely algebraic proof of it which is valid in more general
algebraic contexts, for instance, for smooth algebras. Since n-Poisson structures are special
kind of n-Lie algebra ones we can use freely results of Section 2 in this context.

Definition 3.1. Let M be a smooth manifold. An n-Lie algebra structure on C>*(M)
(froo... f)y = A fal € CZ(M),  fi € CT(M) (3.1
is called an n-Poisson structure on M if the map

f=Af. } (3.2)

is a derivation of the algebra C*°(M).

Last condition means Leibniz’s rule with respect to the first argument

Ufg by ... Huotd = flg. hie.... Bo 1t +glfihi. ... Bt} (3.3)

Evidently, due to skew-symmetry, Leibniz’s rule is valid for all arguments.
An equivalent way to express this property is to say that the operator

Xpy gy 1 C(M) - CT(M) (3.4)
defined as
Xtyfurr @ =1{f1..--, fn—1, 8} (3.5)

is a vector field on M. Such a field is called Hamiltonian corresponding to the Hamiltonian
functions fi. ..., fn—1-
A manifold supplied with an n-Poisson structure is called n-Poisson or Nambu—Poisson
manifold. It is natural to interpret a vector field on M as a 1-Poisson structure on it.
Vector fields on M that are derivations of the considered n-Poisson structure are called
canonical (with respect to it). As in the classical case n = 2 Hamiltonian fields of an
n-Poisson structure are, obviously, canonical fields.
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Let M and N be n-Poisson manifolds and {, },; and {, }y be the corresponding brackets.
A map F : M — N is said to be Poisson if

(F*(fD)s e F*(f = F*({f1o -y fudN) VSiooos fo € CP(N) (3.6)

Example 3.1 [7]. Let X, ..., X, be commuting vector fields on M. Then
{fioooo, fu} = det | X; (f)] (3.7

is an n-Poisson structure on M. More generally, if A is a commutative algebra any set
of n commuting derivations of it defines an n-Poisson structure on it. Note also that the
so-defined n-Poisson structure is invariant with respect to a unimodular transformation of
fields Y; = Zj sij Xj, det|lsijll = 1,s;; € C®(M).

More generally, if [X;, Xi] = cf X1, ¢}, € C®(M), then we have {fi,.... fu} =
det || X; (f;)ll is an n-Poison structure on M.

n-Poisson structures are multi-derivations, i.e. multi-linear operators on the algebra
C°°(M) which are derivations with respect to any of their arguments. This is a particu-
lar case of the general concept of multi-differential operator on C*°(M) (more generally,

on a commutative algebra A4 [25]). It means that forany i = 1, 2, ..., k the correspondence
f=Af1,.... fi-tu £ firrs oo ) (3.8)
is a differential operator for any fixed set of functions fi, ..., fi—1, fi+1...., fx. When

dealing with multi-differential operators and, in particular, with multi-derivations we will
adopt the notation of Section 2. For instance, we write f | or ¢ ¢ for the insertion operator, so
that if A is a k-differential operator, then f]A = 17(A) = Ay are three different notations
for the (k — 1)-differential operator

(f1AY(g1, .- 8k—-1) = A(f, 81, -+, 8k—1)- (3.9)

Note the one-to-one correspondence between k-contravariant tensors 7 and k-derivations
A given as

dfe) - 1dfi)T =T(dfi, ..., dfi) = A(f1..... fo)- (3.10)

If, moreover, T is skew-symmetric, then it is a k-vector. In particular, an n-Poisson structure
can be given either by a skew-symmetric n-derivation, or by the k-vector corresponding to
it .

The mentioned one-to-one correspondence between skew-symmetric multi-derivations
and multi-vectors allows to carry well-known operations from the latters over the formers.
For instance, the standard wedge product of two multi-vectors allows to define the wedge
product of the corresponding multi-derivations A and V as

AAVY oo fer) = I (DDA, (3.11)
1

where I = (i1,....4),1 < i1 < .-+ < iy < k41, is an increasing subsequence of
integers, [ is its complementin {1, 2, ..., k 41}, (I, I) is the corresponding permutation of
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1.2, ... k+1, (=)D stands for the sign of it and f; (respectively f7) is a shortnoting
for fi,. ..., fi, (respectively f; ..., fi)- Moreover, definition (3.11) makes sense, in fact.
for arbitrary multi-differential operators, not necessarily derivation, and therefore, defines
an associative and graded commutative multiplication over them.

The Schouten—Nijenhuis bracket carried over multi-derivations looks as

[A VI fn = Y (DDA V)

[|=k—1
— ST =YDy, . (3.12)
|J1=k
where [ and J stand, as before, for increasing subsequences of {1.2,...,k +/ — 1} while

| 1] (respectively, |J|) denotes the length of I (respectively, J). Similarly to (3.11), formula
(3.12) remains meaningful for arbitrary skew-symmetric multi-differential operators and
this way the Schouten—Nijenhuis bracket is extended on them. More exactly, defining the
Schouten grading of k-differential operators to be equal to k — |, we have:

Proposition 3.1. The Schouten graded skew-symmetric multi-differential operators sup-
plied with the bracket operation (3.12) form a graded Lie algebrua, i.e.

[A.V] = —(=DH*Di-brg_ A| (3.13)
(graded skew-symmetrv) and

(_1)(k—l)(n1—l)|-A’ [v,0)] + (_])("1—1)(/*1)"[]. [A.V]]
+(=n"NDrv o, a) =0

(graded Jacobi identiry).

Proof. Graded skew-commutativity is obvious while the graded Jacobi identity is checked
by a direct but tedious computation. o

Corollary 3.1. The well-known compatibility condition [ A, V] = O of two Poisson struc-
tures A(f.g) ={f.ghand V(f, g) = { [, ghi is in the considered context identical to the
one given in the preceding section.

Proof. Just to compare (2.10) forn =2 and (3.12) fork =1 = 2. 0

Remark 3.1. It is worth to emphasize that the Lie derivative of a multi-vector V corre-
sponds in the aforementioned sense to the Lie derivative of the multi-derivation A associated
with V in the sense of the previous section. In particular. the fact that V is an n-Poisson
multi-vector can be seen as

Xfiofy (V) =0, (3.14)
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where X (V) is a short notation for the Lie derivative Ly (V) of V we shall use to simplify
some formulae. Similarly, the compatibility condition of two n-vectors V and W can be
written in the form

foa (W) =0 (3.15)

where Xy, . r_, and Yy . 7, are Hamilionian vector fields with the same Hamilton
functions f|, ..., fu~1 with respect to Poisson structures given by V and W, respectively.

A function g € C*°(M) is said to be a Casimir function if

Xfiofum @ =Af1. o fum1.81 =0, Vfi,.... fa—1 € CT(M). (3.16)

All Casimir functions form, evidently, a subalgebra XC of C*°(M). We denote it also by
Cas(P) when it becomes necessary to refer to the n-Poisson structure P in question and
call it the Casimir algebra. An ideal 7 of the Casimir algebra allows to restrict the original
n-Poisson structure to the submanifold (possibly with singularities)

N={xeM|f(x)=0,fel}]CM. 3.17)
To see this note that
C®(N) = C®(M)/IC>®(M) (3.18)

if N is a submanifold without singularities. Otherwise, define the smooth function algebra
on N by means of (3.18). Further note that the ideal 7* = ZC*>®(M) C C%°(M) is stable
(with respect to the n-Poisson structure in question) in the sense that { f1, ..., f,—1, g} € T*
if g € Z*. This allows one to define the restricted n-Poisson structure on N just by passing
to quotients

i PIv=1A. 0 f) (3.19)

where f = fi(mod Z%). From a geometrical point of view the stability of 7* implies that
Hamiltonian vector fields are tangent to N. The smallest such submanifolds N correspond
to the largest, i.e. maximal, ideals of X. Since any nor-wild maximal ideal of K is of
the form 7 = ker G where G : X — R is a R-homomorphism of unitary R-algebras
it is reasonable to limit our considerations to these ones. Denote by N the submanifold
of M corresponding to the ideal Z = kerG and recall that all R-homomorphisms of K
constitute a manifold (with singularities) SpecpC, the real spectrum of X, in such a way
that K = C®(SpecpK). We shall call it the Casimir manifold of the considered n-Poisson
structure and denote it by Cas (M) or Cas(P) depending on the context. Then the canonical
embedding K € C*>(M) induces by duality the Casimir map

Cas : M — Cas(M). (3.20)

By construction Ng = Cas~!(G). This way one gets the Casimir fibration of M whose
fibers are n-Poisson manifolds. In the Casimir fibration is canonically inscribed the Hamilto-
nian foliation which is defined as follows. First, note that the commutator of two Hamiltonian
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fields is a sum of Hamiltonian fields. In fact, formula (2.7) in the considered context looks
as

[Xflw-wfn—l D, SR Z Xei..... (fr1ofu—1-8ite8n 1- (3.21

This implies that the C*°(M)-module H (P) of vector fields generated by all Hamiltonian
ones is closed with respect to the Lie commutator operation. It defines, therefore, a (singular)
foliation on M called Hamiltonian. It was already mentioned that Hamiltonian fields are
tangent to submanifolds Ng . Hence. any Hamiltonian leaf, i.e. that of the Hamiltonian
foliation, belongs to a suitable Casimir submanifold Ng. So, Casimir submanifolds are
foliated by Hamiltonian leaves.

Example 3.2. Let 7" be the standard (n + 1)-dimensional torus with standard angular

coordinates 61, 65, ..., 8,41. Consider the n-Poisson structure on it defined by vector fields
=l =t x = (322)
P00 T Tee T T 8y " 8 o

as in Example 3.1. Then for a rational A Cas(T”*‘) = S and the Casimir map Cas
7"+ — S!is atrivial fiber bundle with 7" as a fibre. In this case fibres of the Casimir map
are identical to leaves of the Hamiltonian foliation. If A is irrational, then Cas(T"*1) is
just a point which is equivalent to K = R. In other words, 7"*! is the unique submanifold
of the form Ng. On the other hand, the Hamiltonian foliation in this case is n-dimensional
and its leaves are copies of R” immersed everywhere densely in T+

Since Hamiltonian vector fields are, by construction, tangent to the leaves of the Hamil-
tonian foliation, the Poisson multi-vector of the considered Poisson structure is also tangent
to them. For this reason on any such leaf there exists a unique n-Poisson structure such that
the canonical immersion L < M becomes an n-Poisson map. In Section 4 it will be shown
that Poisson leaves are either n-dimensional (regular), or O-dimensional (singular) if n > 2
what is in strong contrast with the classical case n = 2. By this reason n-Poisson structures
on n-dimensional manifolds are to be described. We will get it as a particular case of the
following general assertion.

Proposition 3.2. Let P be an n-Poisson structure of rank n on a manifold M. Then for
any f € C*(M), P is an n-Poisson structure and any two structures of this form are
compatible.

Proof. It is based on the general formula

Lix(Q=fLx(D-XA(f]D) (3.23)

forany f € C®°(M) , X € D(M) and a multi-vector Q on M (see, for instance, [2]). By
applying itto X = Py, 4, and Q = gP,g € C> (M), and taking into account that
h,_, (P) =0 one finds

Py (@P) = [ Puy g (VP — Py hy_y N (8PF). (3.24)
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This formula allows to rewrite the compatibility condition (2.10) for f P and g P as

h,_, A P = 0 for a multi-vector of rank ». O

Corollary 3.2. Any Frobenius n-vector field V on a manifold M is an n-Poisson one. In
particular, such are n-vector fields on an n-dimensional manifold M.

Proof. Since V defines an n-dimensional distribution (with singularities) on M it can be
locally presented as V = hX| A --- A X, forasuitable h € C®(M). But X; A--- A X, is
just the Poisson structure of Example 3.1 and, so, V is also an n-Poisson structure in virtue
of Proposition 3.2. u|

4. Decomposability of n-Poisson structures

In this section we prove aresult which, in a sense, is an analog of the Darboux lemma for n-
Poison structures withn > 2. Ittells that the rank of a non-trivial Poisson n-vector is equal to
n and, therefore, such an n-vector is locally decomposable. This was conjectured by Takhta-
jan and proved recently by Alexeevsky and Guha [1]. Our approach is, however, quite dif-
ferent. We start with collecting and recalling some elementary facts of multi-linear algebra.

Let V be a finite-dimensional vector space. Denote by AX (V) its kth exterior power and
put
wi=al) lal Ve Ak ) 4.1)

.....

for Ve AK(V)anday,...,q € V*.
The following is well-known.

Lemma 4.1. A non-zero k-vector V. € A*(V) is decomposable, i.e. V = v A --- Ay,
for some v; €V, iff it is of rank k.

Vectors v; s are defined uniquely up to aunimodular transformation v; — w; = 3_; ¢;v;.
The subspace of V generated by vy, ..., v coincides with that generated by all vectors of
the form V,;, 4, € V.

Recall also the following lemma.

Lemmad.2. IfvAV =0,veV, Ve AY(V), then V is factorized by v, i.e. V=v AV’
foraV' e A1 (V).

Together with Lemma 4.1 this implies the following.
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Lemma 4.3. A k-vector V is decomposable iff

Va] ,,,,, g1 AV =0, Va,...,¢- eV

Lemma 4.4 (on three planes). Let [Ty, 12, IT3 be (k — 1)-dimensional subspaces of V such

thar diim(I1; N [1;) =k — 2 fori # j. Ifk > 2, then

— the span IT of [1, I, [13 is k-dimensional,

— any (k — 1)-dimensional subspace IT' of V intersecting each of I1;’s along a not less
than (k — 2)-dimensional subspace belongs to I1.

Proof. Obvious. O

Proposition 4.1. Ler V be a k-vector, k > 2. If

Vaercos AVe+ Voo, AVu=0, Va,b.ocy. ..., Ck_r € V*, (4.2)

then V is decomposable.

Proof. By putting a = b in (4.2) we see that W, ., , A W =0 for W = V,,. Therefore.
according to Lemma 4.3, the (k — 1)-vector V,, is decomposable Va € V*.

Denote now by I1, the (k — 1)-dimensional subspace of V canonically associated, ac-
cording to Lemma 4.1, with the decomposable (k — I)-vector V, assumed to be different
from zero. If V, ¢, ..o AVp =0forall ¢y.....ck—2 € V*, then [T, = [T} as it re-
sults from Lemmas 4.2 and 4.1. If, otherwise, V,, ;... _, A Vi # 0 consider the subspace
IT associated according to Lemma 4.1 with the decomposable k-vector V,, ¢, . ¢ - A Vp.
Obviously, IT D IT,,.

On the other hand, equality (4.2) shows that [T coincides with the subspace associated
with the decomposable k-vector Vp, . .., A Vo = 0. By this reason IT O [I, and,
therefore, dim(/7, N ITp) > k —2 > 0. Moreover, if V,, , # 0, thendim([T, N [Tp) = k — 2.
In fact, dim(/1, N [1y) = k — | implies that [T, = [T, and, hence, V, = AV,. Hence,
V.» = AVpp = 0 which is impossible.

Observe, finally, that since V # 0 and k > 3 there exist a.b.c¢ € V* such that
Vib.e # 0. In such a situation (kK — 2)-vectors V, p, Vp . and V, . are ditferent from
zero. Hence, as we have already seen previously, mutual intersections I1,, IT, and IT.
are all (kK — 2)-dimensional. So, these three subspaces satisty the hypothesis of Lemma
4.4. By this reason the span /] of them contains all subspaces Ty, d € V*, and conse-
quently all derived vectors Vy 4, . 4, , belong to /7. Now Lemma 4.1 implies the desired
result. 0

Our next task is to show that the hypothesis of Proposition 4.1 is satisfied by any n-Poisson
multi-vector. First, we need the following property of Lie derivations.

Lemma 4.5. Let X € D(M) and f € C®(M). For a multi-derivation A it holds

Lix(4)= fLx(A) - X A Ay. (4.3)
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Proof. By the definition of the Lie derivative we have

Lix(A)@1, . 8)=FX(AQ@1, . g)) = D A1 oo [X(@Dr - 8n)
= f(X(AGg1, ... 8) = D Agl, ... X (8- &)
=Y DT X @A 81 8-

It remains to note that last sum is just the product X A Ay evaluated on gy, ..., g,. ]
Next identity is basic.

Proposition 4.2. Let A be an n-derivation. Then for any f, g, ¢; € C°°(M) it holds:

Afggr...pn (B = fAg sty ()
+84541...0,2(0) — Argy.p,2 A D
= Agprtbuo Ny 4.4)

Proof. First, note that Ay, = fA, + gAyr. So one has

Afggr.tur(B) = (fAgg1..,2 (D) + (8Af.4:..... 0, (D).

On the other hand, by putting ¥ = Asg, . 0,5 Z = Ag g,
4.5 one finds

6., and applying Lemma

Afgpr.tua(A5) = (Lgy + Ls7z)(D)
=gLy(O)+ fLz(O)—Y AO,—ZAOp. O (4.5)

Corollary 4.1. If A is an n-Poisson structure, then for any f, g, ¢; € C>(M) it holds
Afs¢'1 ----- -2 N Ag + Ag ¢ n-2 A Af = 0 (46)
Proof. Formula (4.4) for an n-Poisson A, and O = A is reduced, obviously, to (4.6). O

Remark 4.1. Formula (4.6) for n = 2 becomes empty. We mention also the following
particular case of (4.6) for which g = f:

Ag.gronr N Ag =0. 4.7)
Theorem 4.1. Any non-trivial n-Poisson n-vector V is of rank n if n > 2.

Proof. Formula (4.6) can be rewritten as

(dgn—1]---1dr]dfIV) A (dg] V)
+(dpn-1] ---Jdei] dgl VIAWSf] V) =0.
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Evaluated ata pointx € M itensures the hypothesis (4.2) of Proposition 4.1 for the n-vector
V. over the tangent space V = T, M. Therefore, V, is of rank n or otherwise identically
equal to zero. U

Corollary 4.2. For n > 2 regular leaves of the Hamiltonian foliation of an n-Poisson
manifold are n-dimensional. Its singular leaves are just points.

Remark 4.2. Since an n-dimensional foliation can be given by means of n commuting
vector fields in a neighborhood of its regular point, Example 3.1 exhausts regular local
forms of n-Poisson structures for n > 2,

Another eventually very important consequence of Theorem 4.1 is that the cartesian
product of two n-Poisson manifolds is not in a natural way such a one if n > 2. In fact,
there is no natural way to construct an n-dimensional foliation on the cartesian product of
two manifolds supplied with such ones.

Theorem 4.1 shows n-Poisson structures for n > 2 to be extremely rigid what implies
some peculiarities going beyond the binary based expectations. Below we exhibit two of
them: no cartesian products and no (in general) n-Poisson structure on the dual of an n-Lie
algebra.

First, note that given two n-vector fields P and Q on manifolds M and N, respectively.
their direct sum P @ Q which is an n-vector field on M x N is naturally defined.

Corollary 4.3. If P and Q are non-trivial n-Poisson vector fields, then P & Q is not an
n-Poisson one for n > 2.

Proof. Just to note that rank(P & Q) = rank(P) + rank(Q). ]

This result can be also proved by a direct computation.

Second, given an n-Lie algebra structure [-,.... ] on V one can try to associate with it
an n-Poisson structure on its dual V* just by copying the standard construction for n = 2.
Namely, let xi, ..., xy € V be a basis. Interpreting x;’s to be coordinate functions on V",
let us put

a a
T = Z [Xi]"“’x“'];x’:/\'“/\ﬁ. (4.8)

I<ij<-<ip<N

In a coordinate-free form the n-vector field T can be presented as

Tdf..... dfiyw) =[d, f1..... dy fn]

withu € V* and f; € C*°(V*) where the differential d, f; of f; at the point u is interpreted
canonically to be an element of V. This n-vector field T is called associated with the n-Lie
algebra structure in question.

It is well known (for instance, [26]) that formula (4.8) defines the standard Poisson
structure on V* when n = 2. However, it is no longer so when n > 2.
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Corollary 44. Ifn > 2, the n-vector field T given by (4.8) is not generally an n-Poisson
one.

Proof. First, note that the n-vector field associated with the direct product of two n-Lie
algebras is the direct sum of n-vector fields associated with each of them. Since, obviously,
the n-vector field associated with a non-trivial n-Lie algebra is of rank not less than n, the
n-vector field associated with the product of two non-trivial n-Lie algebras is of rank not
less than 2n. Therefore, it cannot be an n-Poisson vector if n > 2. a

On the other hand we have:

Proposition 4.3. Formula (4.8) defines an n-Poisson structure on the dual of an n-Lie
algebra of dimension < n + 1.

Proof. As it is easy to see any n-vector defined on a space of dimension < n + 1 is either
of rank n or 0; so, under the hypothesis of the proposition 7' defines an n- or O-dimensional
distribution on V*. Denote by A the n-derivation on V* corresponding to T as in (4.8). It
suffices to show that

fa-r(4) =0 4.9

for any system of polynomials f; (x) in variables x;’s. We prove it by induction on the total
degree § = deg fi + - - - + deg f,,— by starting fromé =n — 1.

To start the induction note that in the case all f;’s are linear on V*, i.e. elements of V,
identity (4.9) is identical to the n-Jacobi identity of the original n-Lie algebra.

To complete the induction it is sufficient to show that (4.9) holds for the system f; =
gh, fo, ..., fa—1 if itholds for g, f2, ..., fu—1 and h, fo, ..., fn—,. Taking into account
that Agp fo.. fos) = 8An o fuy THAg ... f,_, and Lemma 4.5 the problem is reduced
to prove that

faet NAR+ Dify fuy N Dy =0 (4.10)

But since T is of rank n A,
we have

vay N A = 0 for any system @1, ..., ¢gs—1 € C*(V*). So

O0=h] Qg pr oy NAY =Ag, f2, s fuo1 WA= Dg o fuly A A,

so that

Ag fouefoi NAp = A(g, f2,..., fu—1. h),

and, similarly,

Ah‘fz ~~~~~ Jn—1 /\Ag =A(h7 fz»--~7fn—lvg)~

Hence, (4.10) results from skew-symmetry of A. O

Previous discussions lead us to conjecture that:
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If n > 2 any n-Lie algebra is split into the direct product of a trivial n-Lie algebra and
a number of non-trivial n-Lie algebras of dimensions n and (n + 1).

In fact, this conjecture saves in essence the fact that an n-Lie algebra structure generates
an n-Poisson structure on its dual (Proposition 4.3) in view of the resistance of n-Poisson
manifolds to form cartesian products (Corollary 4.3) if n > 2. Also, at least to our knowl-
edge, all known examples in the literature are in favor of this conjecture.

Finally, mention an alternative (and also natural) way to save the dual construction by
giving to the concept of n-Poisson manifold the dual meaning (see [27]). For fundamentals
of this dual approach we send the reader to [19]. A discussion of the Koszul duality can be
found in [9,15].

We conclude this section by answering the natural question: what are multiplicative
compatibility conditions for two multi-Poisson structures, i.e. conditions ensuring that their
wedge product is again a multi-Poisson one.

Proposition 4.4. Let A and V be multi-Poisson structures on the manifold M whose
multiplicities coincide with their ranks (for instance, they are of multiplicities greater than
2). Then A AV is a multi-Poisson structure on M iff TA. V] = 0. Ag, o ((VIAV =
0.V, .y [ (AYANA=0forall gi, hj € C®(M), k andl denoting the multiplicities of A
and V., respectively.

Proof. First, note the formula which is a direct consequence of the wedge product definition:

= Z(_1)(k—m)(N—\”)+(1.1)Aﬁ A V‘/‘i‘ (4.1
1

where I runs all ordered subsets of {1...., N} and |/| denotes the cardinality of /. In
particular. for N = k + 1 — | we have

[]=k Hi=k—1
(4.12)

By applying Lemma 4.5 to f = A(f;), X = Vy; and taking into account that V¢, (V) = 0
and V¢, AV = 0(V is [-Poisson of rank /) we find

(AUDVENANV) = A(f) V5 (A) AV — (-l)kV_/',— NANV 7 (4.13)
and, similarly,

(VUDANAAV) = V(PDANAL(V) = Apy A Ay AV, (4.14)
Since Ay, A A = 0, then

0=V(fpDI(Ag ~NA)=Af1. V[iINA — Ag AN Aviype
ie.

Ag N Aviry = A1, VD) (4.15)
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and, similarly,
Vfi A VA(fI) = V(f,', A(fD)). (4.16)

Now bearing in mind (4.12)—(4.16) we get

AAVIfi o fir (AAV)
=Y (DI PAUFN D) AV = VS, AFINAAY)
1=k
+ 30 EDHEDV(NAA A (V) — AL V(DA AY)
[1|=k—1

= Y =0IDAVEM AV Y DDA A AL (V)
[11=k i=k—1

— (=D'A VI, s firi-D) (4.17)

(see (3.12)). If A AV is amulti-Poisson structure, then it is also a multi-Poisson structure in
the dual sense defined in [19]. But for such structures A AV is multi-Poissoniff [A, V]| = 0.
This shows that [A, V] = 0 is a necessary condition for the considered problem.

Observe now that due to local decomposability of multi-vectors corresponding to A and
V the product A A V is different from zero iff they are transversal to each other. This
implies that the leaves of the corresponding Hamiltonian foliations intersect one another
transversally. By this reason one can find k& local Casimir functions of V, say fi,.... f,
such that A(f1, ..., fr) # 0 and ! Casimir functions of A, say fi+1, ..., fk+ such that
V{(fi+1s--., fey1) # 0. For such chosen f;’s all summands of the first two summations of
(4.17) vanish except one which is

A1 TV g, Seti- () A V.

This implies Vg, .. s (4) AV =0,if A AV is (k + [)-Poisson. Observing then that
local Casimir functions of both A and V generate in that situation a local smooth function
algebra, one can conclude that

g1 (A AV =0 (4.18)

for any family of functions gj, ..., g/—|.
Similarly, it is proved that

Ag].....gl,] (V) ANA=0. (419)

This shows that (4.18), (4.19) and [A, V| = 0 are necessary. The sufficiency is obvious
from (4.17). O

5. Local n-Lie algebras

In this section we discuss the most general natural synthesis of the concept of a multi-Lie
algebra and that of a smooth manifold which is as follows.
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Definition 5.1. A local n-Lie algebra structure on a manifold M is an n-Lie algebra
structure

(fro---. fn) = Ufto o fal

on C>*(M) which is a multi-differential operator.

Below we continue to use the operator notation as well as the bracker one for local n-ary
structures

Alfi-en f)y =11, fal

and refer to the multi-differential operator A as the structure in question itself.
Example 5.1. n-Poisson structures are local n-Lie algebra ones.

A well-known result by Kirillov [11] says that for n = 2 the bi-differential operator
giving a local Lie algebra structure on a manifold M is of first order with respect to both
its arguments. An interesting algebraic proof of this fact can be found in [10]. Kirillov’s
theorem is generalized immediately to higher local muiti-Lie algebras.

Proposition 5.1. Any local n-Lie algebra, n > 2, is given by an n-differential operator of
first order, i.e. of first order with respect to each of its argument.

Proof. 1t results from Kirillov’s theorem applied to (n — 2)-order hereditary structures of
the considered algebra. a

Recall that usual Lie algebra structures defined by means of first order bi-differential
operators are called Jacobi’s [11,12,16]. This motivates the following terminology.

Definition 5.2. An n-Jacobi manifold (structure) is a manifold M supplied with a local
n-Lie algebra structure on C*°(M) given by a first order n-ditferential operator.

Hence, in these terms Proposition 5.1 says that multi-Jacobi structures exhaust local multi-
Lie algebra ones. Note, however, that it seems not to be the case for infinite-dimensional
manifolds that occur in secondary calculus. Kirillov gives also an exhaustive description of
Jacobi manifolds.

Namely, Kirillov showed that a binary Jacobi bracket [- . -] on a manifold M can be
uniquely presented in the form

[fogl=Tf dg) + fX(g) —gX(f)

with X and T being a vector field and a bivector field, respectively, such that [T, T] =
X AT and Lx(T) = 0. Then two qualitatively different situations can occur: X AT =0
and X A T # 0 (locally). In the first of them the bivector T is a Poisson one of rank O
or 2. In the latter case X is a locally Hamiltonian field with respect to T, i.e. X = Ty
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for an appropriate f € C®(M). If X A T # Q,then M is foliated (with singularities) by
(2n + 1)-dimensional leaves with 2n = rank T (an analog of the Hamiltonian foliation) and
the original Jacobi structure is reduced to a family of locally contact brackets [12,16] on
leaves of this foliation.

Below we find an n-ary analog of Kirillov’s theorem for n > 2 showing that in this
case only the first possibility of the two mentioned above survives. Fundamental here is
a canonical decomposition of the first order skew-symmetric multi-differential operator A
defining the local n-Lie algebra in question which we are passing to describe.

Recall, first, that a first order linear (scalar) differential operator on M is a R-linear map
V: C®(M) - C*®(M) such that

V(fg) = fV(g)+gV(f)— fgV(l) Vf,ge C¥M). (5.1)

This algebraic definition is equivalent to the standard coordinate one [12). It characterizes
vector fields on M, i.e. derivations of C*°(M), as first order differential operators V such
that V(1) = 0. Let A be a skew-symmetric first order n-differential operator. According to
the adopted notation A is an (n — 1)-differential operator defined as A (f1, ..., fu—1) =
AL, f1,..., fa—1). Obviously, it is of first order. Moreover, it is a multi-derivation. In
fact, it is seen immediately from what was said before by observing that owing to skew-
commutativity

A(l,..)=(4A)1 =41, =0. 5.2)

If I' is a skew-symmetric k-derivation, then the (k + 1)-differential operator s(/") defined
as

SOV fis vy firD) = Y (=D AT fimts firts oo fegn) (5.3)

is, obviously, skew-symmetric and of first order. Moreover, s(I"); = I'. By applying this
construction o I” = A; we obtain the first order skew-symmetric n-differential operator
AY = s(A') such that (4%, = A,. Last relation shows that the n-differential operator
A = A — A% is an n-derivation. Now gathering together what was done before we obtain:

Proposition 5.2. With any first order skew-symmetric n-differential operator A are associ-
ated skew-symmetric multi-derivations A and A of multiplicities n and n — 1, respeciively,
such that (canonicaldecomposition)

A=A+ 4" 5.4
with A = s(Ay), ie.
A1y ) = D DT RAN S fts firt s f). (5.5)
i
Conversely, any pair (V, I') of skew-symmetric derivations of multiplicities n and n — 1,

respectively, defines a unique skew-symmetric n-differential operator of first order A =
V+s(I)suchthatV = Aand I" = Ay.
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[t is natural to extend the operation s from the skew-symmetric derivations to arbi-
trary skew-symmetric multi-differential operators. Namely, if A is a skew-symmetric k-
differential operator, then we put

k+1
s(ANEI. ..., k1) = Z(—l)’"lgiﬂ(gl ----- im1-&itlsenon 8k+1).

i=1

This way we get the map
s« Diff (M) — Diff i, (M),

Diff j‘l’,I(M ) denoting the space of /th order C*°(M)-valued skew-symmetric k-differential
operators on C®° (M),

Proposition 5.3. The operation s is C*(M)-linear and s* = 0.

Proof. Obvious. tl

Remark 5.1. Proposition 5.3 shows that s can be viewed as the differential of the complex
0 — Diff i (M) > Diff (M) > - > Difffli(M) > -

This complex is acyclic in positive dimensions and its 0-cohomology group is isomorphic
to C*°(M). In fact, the insertion of the unity operator | is a homotopy operator for s as it
results from Proposition 5.2.

Further properties of s we need are the following.
Proposition 5.4. The operation s has the properties:
() If X e D(M), then[Lx,s]=0.

) If f e C=(M), then f]s(O)+s(f]0) = f0.
B) sy g = DT AT, e CDROCAL fi).

Proof. We start with (1).
For O € Dzﬁf;’ll,\’,(M ) one has by definition

Lx(s(ON(g1. ..., gk+1) = X(s(D)(g1. .. .. gk+1))
=D sO@1 e X (@) k1)

But

X(s(O)g1. - g = Y (=D X (@)D &i-1. &gl Bhi1)

+Z(—1)i"1giX(D(gl ----- 8i—1:8itlse-ns 8k+1)
-
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and
s(@g1y .- X&)y s Bky1)
= (=)' X (g)O(g), ) 8imty ity 1)
+ Z(—l)j_lgjm(gl, e &1 &l X(&i)y s Rt
j<i
+ Z(*l)j_'gjﬂ(gu...,X(g,'), s 81y Bt s e Bkt1)-
i<j
Therefore,

Lx(s(@) (g1, .- &k+1)
=Y (=D g X (01, &in1, &kl Bt
i

+Z(—1)j-lgj‘3(gl,---,gj—x,gj+1..--,X(gi),..~,gk+1)

Jj<i

+Z(‘1)j—lgjm(gl,..-,X(gi),...,gj—l,gj+1,-..,gk+1)

i<j
= Z(—l)i_lgiX(D)(g1, s i1 Bid s s BRH1)
i

=s(Lx(O)) g1, ..., Lk+1)-

Thus, soLx =Lxos < [Lx,s]=0.
Property (2) is an immediate consequence of the definition of s . Finally, (3) is obtained
from (2) by an obvious induction. O

We need also the following formula concerning Lie derivative.

Lemma 5.1. If f € C®°(M) and O is a skew-symmetric k-derivation, then
Ly(@) = (1-k)f3—s(0),

where the Lie derivative Ly is understood in the sense of Section 2.

Proof. By definition

Le(@) (g1, 8K)
= fO(g1. - 8) — D _O1. - [ 8K)
= fO(g1..--. &)
=D (O &)+ gD it f it &)

=1 -kf0@-...8) + D (=D &O(f, g1 it &1 &)

But last summation coincides, obviously, with —s(O¢) (g1, ..., 8). 0
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Proposition 5.2 suggests to treat the problem of describing n-Jacobi structures as deter-
mination of conditions to impose on a pair of multi-derivations V and O of multiplicities
n and n — 1, respectively, in order that the n-differential operator A = V + s(0) be an
n-Jacobi one. In other words, we have to resolve the equation

(V+V(D))f| f,H(V+s(D)) =0 (56)

with respect to V and O. So we pass to analyze Eq. (5.6).
First, by applying Proposition 5.4, (3) and posing X; = O
(—1)’“'[!(_)"1 ..... fn—1) one finds

Flovee froee facy and h =

SO gy (V) =Y (=DTUAXDN) + Ly(V).
The following expression is computed with the help of Lemmas 4.5 and 5.1:
SO gy (V) =D (=D THAXAY) = Xi AVE) + (1= )RV — (V).
(5.7

Similarly, taking into account Proposition 5.4 (1), Lemmas 4.5 and 5.1 and the fact that
SO gy =Y +hwithY =3 (=)~ £;X; € D(M) one finds

s(Dyp .y (s(8)
(Y + h)(s(D)) = s(Y (D) + (1 — n)hs(D)
sQ_=DTAX@ =Y (DX A D, + (1= D).

il

(5.8)

Putting together formulae (5.7) and (5.8) we obtain the key technical result of this section.

Proposition 5.5. Let V and O be skew-symmetric multi-derivations of multiplicity n and
n — 1, respectively, then the canonical decomposition of the skew-symmetric k-differential
operator

(V+s(@y . (V4 s(8)
is given by the formula

(V +5(@)f gy (V+5(0)) = A +5(4%,

where

A(fi...., fm)=Vh o ()
n—1
+ ) DT AXAY) = X AV + (L= AV

i=1

and
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Afrs oy foe)) =V g (O) =V
n—1
+ ) (DTN Xi(O) = X ADg) + (1= n)hD

i=1

with X; =0 fy forefui B = (=D"10f, - fae)

Corollary 5.1. If A + s(D) is n-Jacobian, then for any g|, . .., gn—2 € C*(M)
Ogpngn2 (V) =0 and Og 4, ,(0)=0

In particular, O is an (n — 1)-Poisson structure.

Proof. In virtue of Proposition 5.5 Eq. (5.6) is equivalent to
A(fi, o e =0, ANAL L ) =0,

It remains to note that

A%1, g1, gn—2) =g g, (D),
Al g1, - =0 e (V). O

Put
n—1

AYS1s s ) =Y (D4 D EDTAIXG A,
i=l

n—1

i=1
Corollary 5.2. IfV + s(0) is an n-Jacobian, then
AY(fiveoo fom) =0 and  AY(fi,.... fam1) =0.

Proof. Corollary 5.1 shows that X;(0) = 0 and X;(V) = 0. Alsc we have

DT X = DT A0 fer S
=(=D"'0f, o fimts fit oo famtaee s )
==D"'OA, L fam)) = A

Hence,
n—1 ) n—1
“ Y DT AV A=Y =) (=D T AKX A V).
i=l1 i=l1
and

n—1 n—1

=Y DX ADL 4+ —mhO =) (=D L)X AD). D

i=I i=1
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Proposition 5.6. (n — 1)-differential operators Ag and A(l) satisfy relations

Ap@V. g ... gn-2) =9 ANW. g1 ... g2+ AN @ g1 . )
—Votiogns ANy = Ve g, A
(—1)"'O(g. g1 ... a2V
— (=" "O gy 21-2)V, (5.9)
and
A(l)(sl”% Eloenes gn-2) = QDA(I)(IIA PP gn-2) + AN g, .. gn-2)
= Vot ANV = Vg e AV (5.10)

Proof. This is essentially the same as the proof of Proposition 4.2. One has to make
use of the fact that the maps f ~— V; and f ~— Oy are derivations and to apply
Lemma 4.5. d

Corollary 5.3. If V + s(0) is n-Jacobian, then

Voutrootna A Dy + Vygroen s A+ (=" D@ g1 802V
+0. g1, ... gn-2)Vy] =0 (5.1
and
Vogrtns ANV + Vi orgn o A Ve =0. (5.12)
Proof. Immediate from formulae (5.9) and (5.10) and Corollary 5.2. O

Corollary 5.4. IfV +s(D) is n-Jacobian, then the n-vector, corresponding to V is locally
either of rank n (i.e. locally decomposable) for n > 2, or trivial.

Proof. Observe that Theorem 4.1 results from formula (4.6) which is identical to
(5.12). 0

Denote by V and W multi-vectors corresponding to V and O, respectively. Let 1,
and Py, x € M, be subspaces of T, M generated by derived vectors of V, and W,,
respectively.

Proposition 5.7. If V + s(0) is n-Jacobian with n > 2, then rank(Wy) < n — | and
P, C Il if V, #0.

Proof. Relation Og, . (V) =0 (Corollary 5.1) implies

Og.gigez AN Vy +Bygig, s AVy =0 (5.13)
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This can be proved repeating literally the reasoning used above to deduce formula (4.6). In
terms of multi-vectors relation (5.13) is equivalent to

(dgn—3]---1dgilde]W) A (@dy]V) + (dga-3] ---]dgi] dy W) A (de]V) = 0.
(5.14)
In particular, for ¢ = ¢ we have
(dgn-3]---1dgi]de|W) A (de]V). (5.15)
By Lemma 4.2 (5.15) shows that the derived vector
(dgn-3]---1dgilde]W)

divides d¢ | V. Since V is of rank n it divides also V. This proves the inclusion P, C [1,.

Further, being W (n — 1)-Poissonian (Corollary 5.1) rank(W) < n — 1 if n > 3. For
n = 3 the inclusion P, C II, shows that rank(W) < 3 due to decomposability of V. But
the rank of a bivector is an even number. So, rank(W) < 2. O

Corollary 5.5. IfV + s(0) is n-Jacobian withn > 2, then X; AV =0and X; AO = 0.

Proof. X is aderived vector of W and, due to inclusion P, C [I1,,isalso a derived vector of
V. It remains to observe that a decomposable multi-vector vanishes when being multiplied
by any of its derived vectors. m|

Corollary 5.6. IfV + s(0) is n-Jacobian with n > 2, then
Vi fo (V) =0, (5.16)
Vit (B) = Vi (5.17)

In particular, V is an n-Poisson structure on M.
Proof. Immediate from Corollary 5.2. o

Below it is supposed that A = V + s(0) defines an n-Jacobi structure on M withn > 2.
A point x € M of that n-Poisson manifold is called regular if both multi-vectors V and W
corresponding to V and OJ, respectively, do not vanish at x. Note that the inclusion P, C 1T,
(Proposition 5.7) implies that x is regular if O is regular at x , i.e. W, # 0.

Now we can prove the main structural result concerning n-Jacobian manifolds withn > 2.

Theorem 5.1. Let A be a non-trivial n-Jacobi structure andn > 2. Then in a neighborhood
of any of its regular points it is either of the form A = V + s(Vy) where V is a non-trivial
n-Poisson structure, or A = s(0) where O is an (n — 1)-Poisson structure (of rank 2 if
n=3).

Proof. Corollary 5.1 and Proposition 5.7 show that O is an (n — 1)-Poisson structure of
rank < n — 1 on M while Corollaries 5.4 and 5.6 show V to be an n-Poisson one of rank n.
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Hamiltonian foliations of these two multi-Poisson structures (we call them O-foliaton and
V-foliation, respectively) are regular foliations of dimensions n — | and n, respectively, in a
neighborhood of a regular pointa € M. Moreover, O-foliation is inscribed into V-foliation
according to Proposition 5.7. So, if the neighborhood i/ of « is sufficiently small, there exist
a system of functionally independent functions v, z;. .. .. Zpm—y. m = dim M such that they
all are constant along leaves of the O-foliation and z|. .. .. z,_, are constant along leaves
of the V-foliation.

Since O is (n — 1)-Poisson of rank n — | there exist (locally) mutually commuting
vector fields X..... Xn—isuchthat 0 = X{ A --- A X,,—|. We can assume that X; €
D). Then it is easy to see that there exist functions xi, . ... Xp—1 € C>(U) such that
X;(x;) = §;;. Vector fields X;’s are, obviously, tangent to leaves of O-foliation and, there-

are independent (functionally). So they form a local chart in I{ in, maybe, smaller neigh-
borhood of ¢. Now vector fields X;’s are identified with (3/0x;)’s, partial derivations in
the sense of the above local chart. Note also, that the vector field 9/3dy is tangent to leaves
of V-foliation. By construction the n-vector V is tangent also to these leaves. By this
reason

o 0 d
/\ PPN
dy  9x R

with A € C*U).

Observe now that 3/dx; is a O-Hamiltonian vector field associated with the Hamiltonian
((—l)i_]x].xz,....x,-_].x,'+1 ...... Xno1) .

For this field relation Uy, , ,(V) =0 (Corollary 5.1) becomes

ad 0 ] ad
— A=A —A =0, (5.18)
ax; dy  dxj 90X, 1
whichis equivalentto dA/dx; = 0. This showsthat A = A(v,zy.,....Zm—y). Hence. vector
fields X1 = 9/0x,..., Xp—1 = 8/9x,—1, X, = A(3/3y) commute and, therefore, there
exist functions yi, ..., y» € C®U) such that X;(v;) = 8;;. i, j =1...., n. Obviously.
functions vy, ..., ¥n, 21.--.,Zm—n constitute a local chart with respect to which X; =
a/ovi.i = 1,... n. Thus, we have proved that
d B B G}
V=—A-"A—, D.—_,—/\---/\,( . (5.19)
a_\’l 3}‘:; ‘9,\’1 a.\’nfl

It remains to note that O = V;, for h = (-1)”“)1,,. This proves the first part of the
theorem.

To prove the second one we observe that if V = 0 in the canonical decomposition of A.
i.e. A = s(0), Corollaries 5.1 and 5.5 show that O is an (n — 1)-Poisson structure of rank
n — 1. (In virtue of Theorem 4.1 last condition is essential only if n = 3.) On the other
hand, one can see easily that when V = 0 any such Poisson structure satisfies conditions
A =0, A% = 0 of Proposition 5.5. o
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Corollary 5.7. If M is an n-Jacobian manifold and n > 2, then in a neighborhood of its

regular point a local chart vy, ..., Yn, 21, - - - » Zm—n €xists such that
. afi " B af;
(Froeeo fo) = det | 210 + ) (=D fidet | |
Yi _ ayj k
k=1

where ||0f; /9f; ||k is the (n — 1) X (n — 1)-matrix obtained from the n x n-matrix ||3f; /3y; ||
by canceling its kth row and nth column.

Proof. It results directly from (5.19) and the definition of s. a

Proposition 5.8. Let V be an n-Poisson structure of rank n on M and f € C®(M). Then
A =V +5(Vy) is an n-Jacobi structure. In particular, this is the case for any n-Poisson V
withn > 2.

Proof. With the notation of Proposition 5.5 X; = V¢ ¢ s | sy f,.; and O = V. By

this reason X, (V) =0aswell as V5, (V) =0.

Therefore, the n-differential operator Al(fl, .., fa—1) (Proposition 5.5) is reduced to
Z;’;ll(—l)’_'_ﬂJ(Xf A V). Moreover, X; A V = 0 due to the fact that V is of rank n.
Hence, in the considered context A'(fi,.... fu_1) = 0.

Next, X;(Vy) = 0 since V¢ is an (n — 1)-Poisson structure.
By applying formula (2.8) foré = Vg, Fay and u = f we see that for h = (- 1)"~!D

(froos fam)) = DIV o fam)

Vi fae (Vf) -V =1l Vi fac (V) =0.

So, the (n — 1)-differential operator A°(fi...., f._1) (Proposition 5.5) is reduced to
ZZ;,](—I)i’l_ﬁJ(Xi A V). But Vy is obviously, of rank < n — 1 and so X; A Vy = 0.
Hence, A°(fi, ..., f,-1) = 0. It proves that A is n-Jacobian. 0O

The construction of Proposition 5.8 can be generalized as follows. Let w be a closed
differential form of order 1. For a multi-derivation V define another one V® by putting
locally V¥ = V¢ if w = d f. This definition is, obviously, correct and allows to globalize
Proposition 5.8.

Proposition 5.9. If V is an n-Poisson structure of rank n, then A = V + s(V®) is an
n-Jacobi structure for any closed differential 1-form w.

Proof. Tt results directly from Proposition 5.8 and from the fact that the n-Jacobi identity
for A is a multi-differential operator. a

Example 5.2. With notation of example 3.2 consider the (n + 1)-Poisson structure

V= 4 A A 9
© 08, 36,41
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on (n + l)-torus T"*!. Then V* with the closed but not exact on T"*! I-form w =
a df| — d6; gives the n-Poisson structure described in Example 3.2. Therefore the (n + 1)-
Jacobi structure A = V + s(V®) on T"t! is such that the leaves of its O-foliation are
everywhere dense in the unique leaf, 7"+, of its V-foliation.

It is not difficult to show that any n-Jacobi strucure with n > 2 on an n-dimensional
manifold is of the form V + s(V%) for suitable closed 1-form w and n-Poisson structure V
on M.

6. n-Bianchi classification

In view of the conjecture of Section 3 on the structure of n-Lie algebras for n > 2 a
classification of (n + 1)-dimensional n-Lie algebras turns out to be of a particular interest.
Such a classification, an analog of that of Bianchi for three-dimensional Lie algebras. is.
in fact, already done in [7] by a direct algebraic approach. Below we get it in a transparent
geometric way which, in addition, reveals some interesting peculiarities.

To start with, observe that on an orientable (n + 1)-dimensional manifold M any n-vector
P can be given in the form

P=a)V

witha |-forma = o p v and a (prescribed) volume (n+41)-vector field V on M, respectively.
Obviously, ] P = 0. This means that « vanishes on the n-dimensional distribution defined
by P.

If P is an n-Poisson one, this distribution is tangent to the corresponding Hamiltonian
foliation and as such is integrable. Therefore, « A da = 0. In virtue of Proposition 3.2 this
condition is sufficient for P to be an n-Poisson vector field.

Let us call an n-Poisson structure unimodular with respect to V if for any n-Hamiltonian
vector field X Lx (V) = 0.

Proposition 6.1. An n-Poisson structure P is V-unimodular iff dap vy = 0.

Proof. Recall the general formula
Lx(a]V)y=a]Lx(V) — Lx()]V, (6.1)

which holds for arbitrary vector field X, differential form « and multi-vector field V. If X
is a P-Hamiltonian field with P = o]V, then Lx(«|V) = 0 and (6.1) gives

afLx(V)=Lx(a)]V.
Since, also, X Ja¢ = 0, Lx(a) = X | da and the last equality can be rewritten as
divy X - P = (X]da)|V (6.2)

due to the fact that Lx (V) = divy X - V. So, divy X = 0 & Lx(V) = 0 for any P-
Hamiltonian field X if da = 0.
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Conversely, (6.2) shows that X | dr vanishes for any P-Hamiltonian field X if P is V-
unimodular. This implies that ¥ | do = O for any Y tangent to the Hamiltonian foliation
of P. Since this foliation is of codimension 1 any decomposable bivector B on M can be
presented at least locally, in form B = Z A Y with Y as above. This shows that B| da = 0
for any decomposable B and, hence, da = 0. O

Now we specify the above construction to the case M = V*,V being an (n + 1)-
dimensional vector space and P = T, T being the n-Poisson structure on V* associated
with an n-Lie algebra structure on V. Also, we consider the (n + 1)-vector field

0 0
V=—A"A
aX] 8xn+1

on V where x;’s are some cartesian coordinates on V*. Such an (n + 1)-field is defined
uniquely up to a scalar factor. So, the above concept of unimodularity does not depend on
the choice of such a V and the 1-form a7 y is defined uniquely up to a scalar factor. Note
also that a7 ¢ is linear in the sense that the function = |ar ¢ is linear on V*, i.e. an element
of V, for any constant vector field ='. In coordinates this means that a7 y looks as

ary = Za,-jxj dx,‘, dij € R.
ij

Proposition 6.2. Algebraic variety of n-Lie algebra structures on V is identical to the
variety of linear differential 1-forms on V* satisfying the condition a A da = 0.

Proof. 1t was already shown that any n-Lie algebra structure on V is characterized uniquely
by the corresponding linear differential 1-form ar ¢.

Conversely, if « is a linear differential 1-form, then n-ary operation on C*°(V*) defined
by the n-vector field ] V is closed on the subspace of linear functions on V*,i.e. on V. This
way one gets an n-ary operation on V. The condition @ A da = 0 guarantees integrability
of the n-distribution on V* defined by P = «|V and by virtue of Corollary 3.2 it is an
n-Poisson structure. This fact restricted on V shows the above n-ary operation to be an
n-Lie one. O

Note now that any linear differential 1-form on V* can be identified with a bilinear 2-
form b on V*. Namely, denote by C,, the constant field of vectors on V* which are equal to
w € V* and put

b(w, p) == (Cula.p), w.p eV,
where bracket (-, -) stands for a natural pairing of V and V*. Obviously,

blw.p) = _ai jwip;
i

ifw=73 wd/dx;),p=7_pj(38/3x;)anda = Y_aj;x; dx;. So, |la;j|| is the matrix of b.
The form b is called generating for the n-Lie algebra in question.
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An n-Lie algebra is called unimodular if all its inner derivations are unimodular operators.
For an (n + 1)-dimensional n-Lie algebra this is, obviously, equivalent to unimodularity
of the associated Poisson structure 7 on V* with respect to a cartesian volume (n + 1)-
vector V. On the other hand, T is V-unimodular iff dery = 0 (Proposition 6.1) and
for a linear differential 1-form « the condition do = 0 is equivalent to @« = dF for a
quadratic polynomial F on V* (or to symmetry of the corresponding bilinear form b).
These considerations prove the following result.

Proposition 6.3. The n-Poisson structure T on V* associated with a unimodular Lie alge-
bra structure on an (n + 1)-dimensional vector space V is of the form dF |V for a suitable
quadratic polynomial F on V*. Therefore, all unimodular n-Lie structures on V are mutually
compatible. Two such structures are isomorphic iff the corresponding quadratic polynomi-
als can be reduced to one another up to a scalar factor by a linear transformation. In
particular, for k = R isomorphic classes of unimodular (n + 1)-dimensional n-Lie struc-
tures can be labeled by two numbers: r (the rank of F), 0 < r < n + 1 and m (the maximal
of positive and negative indices of F), %r <m<r.

Passing now to the case dar v # 0 we note that da7 v is a constant differential 2-form
on V* due to linearity of ar y. Moreover, the condition a7 y A dar v = 0 shows that the
rank of day vy isequal to 2. Therefore, dar v = dx| A dx2 in suitable cartesian coordinates
on V*. Since a7 v divides dx; A dx» and is linear it must be of the form

2
Z.uijxj dx;  withpoy —pp2 = L.

i=l
This is equivalent to say that dar vy = dg + %()q dx> — xpdxy) with
g =q(x1.x2) = Fnxy + (12 + p20)xix2 + pax3).

Note that unimodular transformations of variables do not alter the form of the skew-
symmetric part of ¢7. v. So, by performing a suitable one it is possible to reduce ¢ (x;, x2)
to a diagonal form

aryv = d(uyi + vy + (i dy2 — yadv).
Further, transformations of the form (yi.y2) — (Av), £A~!¥2) and the possibility to
change the sign of a7 v allows to bring it to one of the following canonical forms:

W)\i(n):}j)\d(Z%iZ%)+%(Zld2—22dll). A >0,

Wi(n):z1dz) + 3(z1 dza — z2dzy),

lI/(n):%(zleZ—zzdzl). (6.3)
Proposition 6.4. n-Lie algebras corresponding to the 1-form ar v of the list (6.3) are

mutually non-isomorphic and, therefore, label isomorphic classes of non-unimodular (n+1)
-dimensional n-Lie algebras.
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Proof. Previous considerations show that any non-unimodular (n + 1)-dimensional n-Lie
algebra is isomorphic to one of the list (6.3). Two algebras of the type d/f(n) corresponding
to different A are not isomorphic since non-vanishing of the skew-symmetric part of ¢z y is
equivalent to non-unimodularity condition. On the other hand, A is an invariant of isomor-
phism type since 2/A is equal to the area of a (quasi-) orthonormal base of the symmetric
part of 7 v measured by means of its skew-symmetric part. Other types differ by rank or
signature of the symmetric part. a

The classification we have got has an interesting internal structure. Namely, denote
by B(n) the isomorphism type of (n + 1)-dimensional n-Lie algebras corresponding to
the generating polynomial %xlz Then any (n + 1)-dimensional algebra can be seen as
a “molecule” composed of B(n) and W(n) types of “atoms”. More exactly, the above
discussion can be resumed as follows

Proposition 6.5. Any (n + 1)-dimensional n-Lie algebra can be realized as the sum of
mutually compatible algebras each of them being either of type B(n) or of type ¥ (n).

On the basis of the obtained classification it is not difficult to describe completely the
derivation algebras of (n + 1)-dimensional r-Lie algebras.

A linear operator A : W — W is called an infinitesimal conformal symmetry of a bilinear
form b(u, v) on W if

b(Au, v) + blu, Av) = tr(A)b(u, v). 6.4)

Proposition 6.6. The Lie algebra of derivations of an (n + 1)-dimensional n-Lie algebra
coincides with the algebra of infinitesimal conformal symmetries of its generating bilinear
form.

Proof. A linear operator A on a linear space can be naturally interpreted as a linear vector
field X on it. Moreover, tr(A) = div(X). Formula (6.1) for such a field X which is also a
symmetry of « |V reduces to

a]Lx(V) = Lx(a)]V,

which is identical to (6.4). O

We omit a complete description of the derivation algebras which can be easily obtained
by applying Proposition 6.5. Just note that inner derivations exhaust all derivations of an
(n + 1)-dimensional algebra iff the rank of its generating form is equal to n + 1. The
following examples illustrate some features of outer derivations.

Example 6.1. Consider the four-dimensional 3-Lie algebra corresponding to the generat-
ing polynomial F = %x42. The associated 3-Poisson tensor is
] ]

P =X4— NT— N .
dx; dxp 0Ox3
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Clearly fields x4(3/0x1), x4(9/9x2), x4(3/0x3) form a basis of inner derivations.
Proposition 6.6 shows that
0 N 0 d 4 d 0 N 0
X4— +X1—, x4— +xX20—. Xx4— +X3—
+ 0x4 : ax| 4 0xy 2 x> 4 0Xx4 3 0x3

are outer derivations not tangent to the Hamiltonian leaves of P. On the other hand, the
following outer derivations
0] a d d 0 a

X\ — —X27—, X2 X3 X3 — X
0xy dxp dx2 0x3 0x3 axj

are tangent to these leaves.

Previous method used to get the n-Bianchi classification can be extended to inscribe
into the n-ary context infinite-dimensional Lie algebras too. This is well illustrated by the
following example.

Example 6.2 (Witt algebra). The Witt (or s/(2, R) Kac—-Moody) algebra is generated by
ei,i € (0,1,2,...)according to

leioej] = (j = ierpjoy Vi j €N,

Elements eg. ¢}, e2 generate a three-dimensional subalgebra isomorphic to s/(2, R). It is
easy to see that the multiple commutator €, = [en, -+, [e2, e3]l(k times) is equal to
klezix. So the elements eg, €], €2, e3 and €, Yk € N constitute a new basis of the Witt
algebra.

Let us consider now the Poisson bracket on R? given by Pr with

d d 0
P=—-—AN—"N—
dx;  Odxp 0x3
and
F=xix —xzz.
ie
d d 0 J J J
PF=X|‘—_/\ 2X2‘—/\‘—‘—+X3‘——'/\‘——.
dx;  dxa dx;  9x3 dxy  0x3

Then we have the following ordinary Poisson bracket:
{aoot=x. {x,x3)=2x, {x.x3}=x3.
So the correspondence
[ Je .l eex, e oxn e ox3 (6.5)

is an isomorphism of Lie algebras. Moreover, this isomorphism of subalgebras can be
extended to an embedding of the whole Witt algebra into the Poisson algebra {-, -} according
to:
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.- ]ef.}, eox, e ox2, e x3,
2
X 2F X1x3 1
e3eg=—3 _—— =1, e3ry © — {x3,...,{x3,8}}.
X2 \ X1Xx3 F o———

k times

7. Dynamical aspects

A Hamiltonian vector field X g, . g, | associated with an n-Poisson structure can be
called n-Poisson, or Nambu dynamics. The corresponding equation of motion is

df

TE:XHI‘HZ ..... Hn_]fz{H],HZ,-.-an—lvf}- (71)
An important peculiarity of a Nambu dynamics is that it admits at least » — | independent
constants of motion, namely Hy, ..., H,_ . Also such a dynamics admits n — 1 different but

mutually compatible Poisson descriptions. The corresponding ith (usual) Poisson bracket
and Hamiltonian are

(fogli=1{Hi,....,Hi_1,Hiy1,....Hooy, f, g} and (=D""'H;,

respectively.
So, the fact that a dynamics is a Nambu one can be exploited with the use. Below we give
some examples of that.

7.1. The Kepler dynamics

Occasionally, a dynamical vector field I" admitting 2n — 1 constants of the motion on a
2n-dimensional manifold M is called hyper-integrable or degenerate.

If f1, f2...., fan— are first integrals for I” and f>, € C*(M) is such that I"'( f2,) = 1,
then the 2r-Poisson bracket

i

3
is preserved by I” which becomes Hamiltonian with respect to (7.2) with the Hamiltonian

function (f1, f2, ..., fan—1).
Of course the corresponding 2n-Poisson vector is

] i) ]

{h1,ha, ..., ~h2y) =det , L, je(, ..., 2n), (7.2)

= — A— A A . (7.3)
afi  9f2 9f2n
More generally the 2n-Poisson bracket
dh; .
{h1,ha, ... hop)F = Fdet|—|., i, jel, ..., 2n, 7.4
3f;j

is preserved by I" iff F is a first integral, i.e. F = F(fy, f2,--., fan—1)-
The Kepler dynamics illustrates such a situation.
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Recall that the Kepler vector field, in spherical-polar coordinates (r, 8, ¢) in R® — {0} .
is given by

] 0 pp 0 P d
=-— <Prn St —
m ar r- 06 r2sin- @ dg

L (Pi+p)) 3 pocost § kD 7s)
r3 sin’0 9pr  risin’@0pe  ridpy -
with (pr, ps. py) canonical conjugate variables.
I" is globally Hamiltonian with respect to the symplectic form
w=dp, A dr+ dpg A df + dp, Ady (7.6)
with Hamiltonian H given by (see, for instance [14]):
2
i 5 pg Py k
H=—\p/+—=5+ - - 7.7
Zm (P, r2 o r2sin 6 r D

In action—angle coordinates (Jy,, ¢5), h € (1,2, 3) (see, for instance, [22]), the Kepler
Hamiltonian H, the symplectic form w and the vector field /" become:

mk?

H=———— w = dJ./\dh,
Ur+ Jo + Jg)2 2 dnn dg

r=v (i + _8_ + —d—>
dpy  d¢2 O3
with v = 2mk?/(J, + Jg + Jy)>.
Functionally independent constants of the motion are: f1 = J|, o = J2, 3 = J3. fa =
01— @2, f5s =2 —¢3.
Now it is easy to see that (7.8) becomes 6-Hamiltonian with respect to (7.4) with F = v.
So

(7.8)

o(hy, hy, h3, ha, hs, h
{h1.h2, h3, ha, hs he) = v (B2, 13, hay s, o) (1.9)
a(J1, J2, J3, 01, 92, ¢3)

provides us with a 6-ary bracket for the Kepler dynamics.
In terms of this bracket, the equations of the motion look as

df
dr

By fixing some of the functions h’s we get hereditary brackets.

=viJ1, 2. 3,01 — @2, 02 — @3, f}. (7.10)

7.2. The spinning particle

Given a dynamics, i.e. a vector field I" on a manifold M, it colud be interesting to realize
it as a Hamiltonian field with respect to a Poisson structure [4]. Below it will be shown how
multi-Poisson structures can be used in this connection.
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We shall ignore the spatial degree of freedom of the particle and study only the spin
variables. Letus treat the spin variables S = (S, S2, $3) aselementsin R3. The equations for
these variables when the particle interacts with an external magnetic field B = (B, B>, B3)
are given by

ds;

T M€ S; By, (7.11)

where p denotes the magnetic moment.

This dynamics has two first integrals, namely, S% = S]2 + 522 + 532 andS-B = S8 +
S2B> + S3B3 and, in addition, is canonical for the ternary bracket associated with the
3-vector field

d 0 d
—_— A — A —.
a5 085 483

The most general ternary bracket preserved by dynamics (7.11) is associated with the
three vector field
f 9 A 4 A 9 (7.12)
S 98, 483’ '
where f is a first integral of it.
All Poisson structures obtained by fixing a function F = F (52, S - B) are preserved by
the dynamics and are mutually compatible. The corresponding Poisson bracket is
7 aF
SivSklr = fejiu—.
{ k}p f jkl 35S,
Now we show how the ternary Poisson structure (7.12) allows for the alternative ordinary
Poisson brackets described in [4]:
— Standard description

f=4% F=8$%

For this choice the algebra generated by the Poisson brackets on linear functions is
the su#(2) Lie algebra. The Hamiltonian function for the dynamics is the standard one
H = —uSB.
— Non-standard description
Now we take
| 1 [cosh2A8; |
==, F=St+S+—|—"—=——
f=3 ‘+2+2A[ sinh A x]
with Hamiltonian H = —uAS3. Here for simplicity we have taken the magnetic field
along the third axis. The parameter A is a deformation parameter and the standard de-
scription is recovered for A — 0.

The hereditary Poisson brackets are:

1 sinh 2153

f f f
5,8 R 51, 8 =357, S1, S =
{$2, S3)p 1. {81, 83l = %2, {81, S2)% > simh A
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These brackets are a classical realization of the quantum commutation relations for gen-
erators of the U, (s1(2)) Hopf algebra.
We also notice that this Poisson Bracket is compatible with the previous one as they are
hereditary from the same ternary structure (7.12).

— Another non-standard description
There is another choice for f and F which is known to correspond to the classical limit
of the U, (s1(2)) Hopf algebra.
Itis

f=1r8. F=8+5+5+5;"
It leads to the following brackets:
A : -1 _
{52,53}‘; = 55153, {51.53}‘;- = 15253, [S]-SZ}';: = EA[S;‘_S} 21'
With respect to this Poisson bracket dynamics (7.11) becomes Hamiltonian with Hamil-

tonian function

2u
A

with the magnetic field along the third axis.

B
H=— 1HS3

Of course dynamics (7.11) admits many other Poisson realizations of this type.
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