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Abstract 

n-Lie algebra structures on smooth function algebras given by means of multi-differential oper- 
ators, are studied and their canonical forms are obtained. 

Necessary and sufficient conditions for the sum and the wedge product of two n-Poisson structures 
to be again a multi-Poisson are found. It is proven that the canonical n-vector on the dual of an 
n-Lie algebra g is n-Poisson iff dim g 5 n + I. 

The problem of compatibility of two n-Lie algebra structures is analyzed and the compatibility 
relations connecting hereditary structures of a given n-Lie algebra are obtained. (n + I )-dimensional 
n-Lie algebras are classified and their “elementary particle-like” structure is discovered. 

Some simple applications to dynamics are discussed. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The concept of n-Poisson structure (Nambu-Poisson manifold in terminology by Takhta- 
jan) is a particular case of that of n-Lie algebra. To our knowledge the latter was introduced 
for the fist time by Filippov [7] in 1985 who gave first examples, developed first structural 
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concepts, like simplicity, in this context and classified n-Lie algebras of dimensions n + 1 
which is parallel to the Bianchi classification of three-dimensional Lie algebras. Filippov 
defines an n-Lie algebra structure to be an n-ary multi-linear and anti-symmetric operation 
which satisfies the n-a~ Jacobi identity 

~~uI,~~~,u,~1,~l,~~~,u~-Il=~~~I.uI,~~~,~,,-Il,~2,....u,,1 

+~UI,~LI2,UI,...~un-Il,U3,~~~,Unl+”’ 

+[ul,..., un-I, [u,, VI,. . .. %lll. (1.1) 

Such an operation, realized on the smooth function algebra of a manifold and additionally 
assumed to be an n-derivation, is an n-Poisson structure. This general concept, however, was 
introduced neither by Filippov, nor, to our knowledge, by other mathematicians at that time. 
It was done much later in 1994 by Takhtajan [23] in order to formalize mathematically the n- 
ary generalization of Hamiltonian mechanics proposed by Nambu [20] in 1973. Apparently 
Nambu was motivated by some problems of quark dynamics and the n-bracket operation 
he considered was 

IfI?. (1.2) 

But Nambu himself as well as his followers do not mention that n-bracket (1.2) satisfies the 
n-Jacobi identity (1.1). On the other hand, Filippov reports (1.2) in his paper among other 
examples of n-Lie algebras. It seems that Filippov’s work remained unnoticed by physicists. 
For instance, Takhtajan refers in [23] to a private communication by Flato and Fronsdal 
of 1992 who observed that the Nambu canonical bracket (1.2) satisfies the fundamental 
identity (1.1). 

In this paper we study local n-Lie algebras, i.e. n-Lie algebra structures on smooth func- 
tion algebras of smooth manifolds which are given by means of multi-differential operators. 
It follows from a theorem by Kirillov that these structure multi-differential operators are of 
the first order. We call n-Jacobi a local n-Lie algebra structure on a manifold. In the case 
when the structure multi-differential operator is a multi-derivation one gets an n-Poisson 
structure. So, n-Poisson manifolds form a subclass of n-Jacobi ones. The main mathemati- 
cal result of the paper is a full local description of n-Jacobi and, in particular, of n-Poisson 
manifolds. This is an n-ary analog of the Durboux lemma. In what concerns n-Poisson 
manifolds the same result was also recently obtained by Alexeevsky and Guha [I]. Our ap- 
proach is, however, quite different and, maybe, better reveals why n-Poisson and n-Jacobi 
structures reduce essentially to the functional determinants (1.2) (Theorems 4.1 and 5.1). 

An important consequence of the n-Darboux lemma is that the Cartesian product of two 
n-Jacobi, or two n-Poisson manifolds does not give a manifold of the same type if n z 2. 
Possibly this fact may explain the remarkable inseparability of quarks. This possibility sug- 
gests to investigate better the relevance of local n-Lie algebra structures for quark dynamics. 
The structure of (n + I)-dimensional n-Lie algebras which is described in Section 6 seems 
to be in favor of such idea. 

It was not our unique goal in this paper to describe local structure of local n-Lie al- 
gebras. First, we tried to be systematic in what concerns the relevant basic formulae and 



G. Murtno et ul. /Journul ofGromet~ and Phyics 2.5 (/POX) 141-182 I43 

constructions. Second, possible applications of the developed theory to integrable systems 
and related problems of dynamics are illustrated on some examples of current interest. 

More precisely, the content of the paper is as follows. 
In Section 2 the necessary generalities concerning n-Lie algebras and their derivations 

are reported. A new point discussed there is the concept of cotnputihility of two /z-Lie 
structures defined on the same vector space. Two compatible structures can be combined to 
get a third one. This is why this concept seems to be of a crucial importance even for the 
theory of usual, i.e. ‘-Lie, algebras. Fixing a number of arguments in an n-Lie bracket one 
gets new multi-linear Lie algebras of lower multiplicities, called hereditary. We deduce the 
compatibility relations tacking together hereditary structures of a given n-Lie algebra. 

Generalities on n-Poisson manifolds are collected in Section 3. There we introduce and 
discuss such basic notions related to an rl-Poisson manifold as the Crtsitnir a/p+ta. Cctsitnir 

tnap and H~rmilronian,folintion. It is shown that n-Poisson structures allow for multiplication 
by smooth functions if tz 2 3. 

The main structure result regarding n-Poisson structures (Theorem 4. I ) is proved in 
Section 4. It tells that the structure n-vector of an n-Poisson structure is of rank II (t/cl- 
compo,snhlr) if tt > 2. This leads directly to the n-Drrrboux Irmmtr: Gi\w cm tt-Poi,s.sott 

structure. n > 2, on u mamfoid M thrre exists cl local churt _t-1 . . . s,,, . III = dim M 2 II. 
on M such thut the corresponding n-Poisson bracket is gi\wt by ( 1.2). Two consequences 
of this result are worth mentioning. First, the n-bracket defined naturally on the dual of an tt- 
Lie algebra V is not generally an n-Poisson structure if tl > 3. Thia is in sharp contrast with 
usual. i.e. tz = 2, Lie algebras. However. we show that it is still so for tl-dimensional and 
(tz + 1 )-dimensional n-Lie algebras. By this and some other reasons it is natural to con.jecture 
that n-Lie algebras with n > 2 are essentially tz-dimensional and (n + I )-dimensional ones. 
Finally, in this section we deduce necessary and sufficient conditions in order the wedge 
product of two multi-Poisson structures be again a Poisson one. 

The n-Darboux lemma for general n-Jacobi manifolds with tt > 2 is proved in Section S. 
Theorem 5.1 and Corollary 5.7. The key idea in doing that is to split a first order multi- 
differential operator into two parts similar to the canonical representation of a scalar first 
order differential operator as the sum of a derivation and a function. An tl-ary analog of the 
well-known Bianchi classification of three-dimensional Lie algebras is given in Section 6. 
An exhaustive description of (n + I )-dimensional tl-Lie algebras was already done by 
Filippov [7] by a direct algebraic approach. Our approach is absolutely different and based 
on the use of the natural n-Poisson structure on the dual of an (11 + I )-dimensional /l-Lie 
algebra. It allows to get the classification in a very simple and transparent way and. what is 
more important, to discover what we would like to call an rlrtnetzta~purtic,/c,-/ihP structure 
of (n + 1 )-dimensional n-Lie algebras. More exactly, we show that any such algebra is 
a specific linear combination of two simplest tl-Lie algebra types realized in a mutually 
compatible (in the sense of Section 2) way. A number similar to the coupling constant 
appears in this context. In this section we describe also derivations of (tt + I )-dimensional 
n-Lie algebras and realize the Witt (or sl(2, R)-Kac-Moody) algebra as a 3-Lie subalgebra 
of the canonical 3-algebra structure on I@‘. In the concluding Section 7 we exhibit on 
concrete examples some simple applications of tl-ary structures to dynamics. First. WC use 
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the Kepler dynamics to show how the constants of motion can be put in relation with multi- 
Poisson structures. Second, alternative Poisson realizations of a spinning particle dynamics 
f are given by using ternary structures preserved by f. In a separate paper applications to 
dynamics of the developed formalism will be discussed more systematically. 

The multi-generalization of the concept of (local) Lie algebra studied in this paper is 
not, in fact, unique and there are other natural alternatives (see [9,19,15,27]). All these 
generalizations are mutually interrelated and open very promising perspectives for particle 
and field dynamics. 

In this article we follow Filippov in what concerns the terminology and use n-Lie alge- 
bra instead of Takhtajian’s Nambu-Lie gebrus. The reason is that arabic al-gebre became 
ethymologically indivisible in the current mathematical language, like ring, group, etc. So, 
it would be hardly convenient to use n-gebru together with the indisputable n-ring. 

2. Iz -Lie algebras 

We start with some basic definitions. 

Definition 2.1. An n-Lie algebra structure on a vector space V (over a field K) is a multi- 
linear mapping of V x . . x V(n times) to V such that for any Ui, uj E V, the n-Jacobi 
identity (1.1) holds. 

Remark 2.1. It is convenient to treat the ground field K as the unique O-Lie algebra and 
a linear space supplied with a linear operator as a l-Lie algebra. 

If an n-Lie algebra is fixed in the current context we refer to the underlying vector space 
IJ as the n-Lie algebra in question (as it is common for the usual Lie algebras). However, 
sometimes we need consider two or more n-Lie algebra structures on the same vector space. 
In such a situation we use P(ut, . . , u,) instead of [ut, . . . , u,]. This notation appeals 
directly to the n-Lie algebra in question and is more flexible than the use of alternative 
bracket graphics. 

Example 2.1 [7]. Let I/ be an (n + I)-dimensional vector space over Iw supplied with an 
orientation and a scalar product (., .). 

The n-vectorproduct [ul, . . , u,] of ~1,. . . , vn E V is defined uniquely by require- 
ments: 
I. [ut,. . . ( u,] is orthogonal to all vi’s; 

2. /[VI,. . . , ~a]/ = det ]](ui, uj)]]“2; 
3. the ordered system ~1, . . , u,,, [VI, . . , u,, 1 conforms the orientation of V. 

Let P and Q be n-Lie algebra structures on V and W, respectively. Then their direct 
product R = P CB Q defined as 
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R((uI. WI), . . . (u,, w,)) = (P(uI. . . . . u,), Q(wI.. . ~1) 

with u; E V, uji E W is an n-Lie algebra structure on V $ W. 
A central notion in the theory of n-Lie algebras is that of derivation [7]. 

14s 

Definition 2.2. A linear map Z? : V -+ V is said to be a derivation of the n-Lie algebra V 
if for any 1(1( , u,, E V 

D[U[. . . . . u,] = X[u1, . ..( 23u;, . ..( u,]. (3. I ) 

i=l 

Fixing arbitrary elements u 1, . . . , ur,_l ~Vonegetsamapu+ [u),...u,_t,u]which 
is a derivation of V as it follows from the Jacobi identity (1.1). Such a derivation is called 
pure inner associated with I* 1. . . , u,-1. It will be denoted by ad,, ,._., u,i_, or P,, ._.._ u,,_, for 
the n-Lie algebra structure P in question. Linear combinations of pure inner derivations will 
be called inner derivations (of P). Note that the concepts of inner and pure inner coincide 
for n = 2 and that Hamiltonian vector fields are inner derivations of the background Poisson 
structure. Following the standard terminology we, sometimes, shall call outer. derivations 
of V which are not inner just to stress the instance of it. 

Proposition 2.1. Derivations of an n-Lie algebra form a Lie algebra with respect to the 
standard commutation operation and inner derivations constitute an ideal of it. 

prQc$ Let DI. 2)~ be derivations of the bracket [.. . . , .I. Then, obviously, 

Dl(D2([Ul* . . . . U,]))=~([ . . . . DIU; ,..., DzUj ,... 1 

icj 

+ [.. . ,2)2Ui.. . . V]Uj, . . .]) 

+Cr /AI.. . ,vlv2u;, . (U,] (2.2) 

Therefore, 

The first assertion in the proposition is so proven. The second assertion follows by observing 
that for a derivation 2) 

P. a& ,.... u,_,lu =NuI, . . . , u,-~, u]) - [ul. . . +I, a] 

=c [Ul,..., vu; ,... u,-l,Ul 
ip-I 

So, in virtue of (2.3) one has 
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= c a& I,.... vu, ,__.. LA,-, ([VI, . . . , u,l) 

In other words, 

ID, 4, ,,___ .._,I = c 4, ,,..., vu ,,_... u,_, 

or, with the alternative notation 

PD, pu I,... .._,I = c p* I,,,.. vu ,,,.... u,,-,’ 0 

(2.4) 

(2.5) 

(2.6) 

By putting D = P,,~,,,U,I_, in (2.6) one gets the commutation formula for pure inner 
derivations 

[P” I...., L’,t_, 7 pu I..... L&,1 = c pu I,.... [u I...., “,,_,.U,l,.... u,z-,’ (2.7) 

Note also the following relation in the algebra of inner derivations of P which is due to 
skew-commutativity of the left-hand side commutator in (2.7): 

c PU I,.... [q ,... “,-,.U,] ,..., U,_l + c P “I,.... [UI ,..., U,_,,U,] . . l&I = 0. 
i i 

A description of the derivation algebra of an (n + I)-dimensional n-Lie algebra is given 
in Proposition 6.6, see also [7]. Various outer derivations of an “atomic” four-dimensional 
3-Lie algebra are presented in Example 6.1. 

While the above results are just straightforward generalizations of known elementary 
facts of the standard Lie algebra theory the following simple observation (due to Filippov) 
is a very important new peculiarity of n-ax-y Lie algebras with n > 2. 

Proposition 2.2. Let P be an n-Lie algebra structure on V. Then for any u 1, . . . , uk E 

V, k I n, PL~,.....u, is an (n - k)-Lie algebra structure on V. 

ProojY It is sufficient, obviously, to prove this result for k = 1 only. But in this case one 
can see easily that the Jacobi identity for P, is obtained from that of P just by putting in it 
u n = u,_t = U. 0 
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Example 2.2. If P is the n-vector product structure of Example 2.1, then the (n - k )- 
Lie algebra structure Pu, .,..,uk on V is the direct product of the trivial structure on S = 
Span{ut,.... Lik) and the (n - k)-vector product structure on S’ with respect to the scalar 
product 

(., .)’ = h(., .)l,s1, h = (u&(Ut,. . , Llk))l’(“-‘). 

on S’. 

Multi-Lie structures Pu, ,,,.,,I. obtained in this way from P will be called hereditu~ (with 
respect to P) of order k. The fact that these structures belong to the same,ftimily implies 
mutual compatibility of them, an important concept we are going to discuss. 

With this purpose we need first the following analog of the Lie derivation operator. Let 
Q : V x ... x V + 1) be a k-linear mapping and a : V + V be a linear operator. The 
&derivative a(Q) of Q is also a k-linear map defined as 

la(Q)l(ut, . . . . Uk) = a(Q(ut.. . , Uk)) - c Q(u~, , au,. . . uk). 
i 

Note that the Jacobi identity (1.1) is equivalent to P,, , ,,,,, Llk (P) = 0 for any u 1, . . uk E 
v. 

Example 2.3. If k = 1, i.e. Q is a linear operator on V, then a(Q) = [a, Ql. 

Sometimes it is more convenient to use La instead of a for the &derivative. An instance 
of it is the formula 

[La, /,I = La(u)? 

where I,, for u E V denotes the insertion operator, i.e. 

lu(Q,(u~..... &-I)= Q(u,u~,....uk-I). 

The proof of (2.8) is trivial. 

(2.8) 

(2.9) 

Definition 2.3. Two n-Lie algebra structures on V are said to be compatible if for any 
11, . . . , Lf,,.-1 E v 

P u,.....u,,_, (Q) + Qu,.....u,,_, (PI = 0. (2.10) 

Remark 2.2. If V = CCC(M). II = 2 and P and Q are two Poisson structures on M, then 
they are compatible in the well-known sense of Magri [ 171 (see also [.5,6,13]) iff they are 
compatible in the sense of Definition 2.3. It is not difficult to see that in such a situation 
condition (2.10) is identical to the vanishing of the Schouten bracket of P and Q. 

Example 2.4. For n = 1 the compatibility condition is empty. In fact, in this case P and 
Q are just linear operators and 

p(Q)+Q(p)=[P,Ql+[Q.Pl=O. 
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The following proposition gives a possible interpretation of the notion of compatibility. 

Proposition 2.3. Let P and Q be n-Lie structures on V. Ifa, b E K, a b # 0, then a P + b Q 
is an n-Lie algebra structure iff P and Q are compatible. 

Pro05 The following identity is due to linearity of the Lie derivative expression I (R) with 
respect to both I and R: 

(aP + bQ)u,.,...Un-,(aP +bQ> =a2Pu,,_.,u,1_,(P) +abPu,,...,u,_,(Q) 
+abQU,,....u,_,(P) + b2Qu,,...,U,_,<Q). 

It remains now to apply interpretation (2.8) of the Jacobi identity. 0 

Example 2.5. Let A be an associative algebra. For a given A4 E A define a skew-symmetric 
bracket [. , .]M on A by putting 

[A, BIM = AMB - BMA, A, B E A. (2.11) 

It is easy to see that this, in fact, is a Lie algebra structure on A. Moreover, for any 
M, N E A structures [. , .]M and [. , .]N are compatible. This follows from the fact that 

[. , .lM + 1. 3 .lN = [. 3  .lM+N. 

Corollary 2.1. Any twofirst order hereditary structures P,, and P, of an n-Lie algebra P 
are compatible. 

Prooj In fact, according to Proposition 2.2, P, + PU = PU+” is an (n - I)-algebra struc- 
ture. 0 

On the contrary, hereditary structures of an order greater than 1 are not, in general, 
mutually compatible. It can be seen as follows. 

Denote by Comp( P, Q; u 1, . . . , u,_ I) the left-hand side of the compatibility condition 
(2.10). Then a direct computation shows that 

Cow(Pu.u~ Pw.:; ~1~. . . t ~~-3) = PP~,~.~ ,...., u,_j,w).z + pw,~(u.Ll.u ,,__.. +,.,-) 

+ PP(uLz.u I,.... U”_3,U).U + PU.P(U~.Z.U I...., U,_j,U) 

In particular, for ut = u we have 

C~~P(PU,U, PUG; u, U2, . . . 3 Un-3) = ~U.P(ULZ,U,U~ . . . . u,_j.u) = Q~(m.z.u~ . . . . u,_~,u) 

with Q = P,. Now one can see from an example that QQ(~.~,~~...,~,_~,~) is generically dif- 
ferent from zero. For instance, if P is the n-vector product algebra, then Q = PU is isomor- 
phic to the direct sum of the (n - 1)-vector product algebra and the trivial one-dimensional 

one. Then QQ(~.~.~~ ,.... U,_3,U) # 0 for linearly independent w, z, ~42, . . . , u,-3, u belong- 
ing to the first direct summand. However, second order hereditary structures are subjected 



G. Marmo et al./Journal of Geometry and Phyics 25 (1998) 141-182 14’) 

to another kind of relations deriving from that of compatibility. To describe them it will be 
convenient to introduce a symmetric bilinear function Comp( P. (2) defined by 

ComptP. Q)(uI,. . , u,-I) = Comp(P, Q: ~1.. . , u,~-I). (2.12) 

By definition Comp( P, Q) is an (n - I)-linear skew-symmetric function on V with values in 
the space of n-linear skew-symmetric functions on V. By this reason we have, in particular. 

C~w(~r+ul.r. PL,+ub,z) = Comp(P,.,~. Pu.:) + Comp(PL,.,b. P,,s.,) 

+ Comp( P,,,.,, P,.,) + Comp(P,,,.,,. Pu,.:). 

Note now that two second order hereditary structures of the form P,, 1’, F’,,; are compatible 
because they can be regarded as first order hereditary structures of the (n - I )-Lie algebra 
P, . By this reason the above equality reduces to 

ComP(P,.,,. PU,.;) + Comp(P,.,. P,,b.,3) = 0. (2.13) 

Identity (2.13) binding second order secondary structures tells that the compatibility con- 
dition between P,., and P,,,, depends rather on bivectors u A u and UJ A z than on vectors 
u, u and w, z representing them, correspondingly. 

Similar relations binding together kth order hereditary structures can be found by gener- 
alizing properly the above reasoning. With this purpose we need to develop a suitable nota- 
tion associated with a fixed n-Lie algebra structure P on V. Let ut, . . , uk, WI. , urk E 
v. ;=I,..., k. 

Let us define the symbol (ut , . . . , z’k IU!l, . . , U’k) by 

(UI. . . U&l,. . . , ?&)(tdI,. ..U,-k-1) 

= c~vnp(P~~l ,.... 1’k, PusI ._... ulk: ul. . . , url-k-l). 

so,(ul. . . . . uklwl, . . . . wk) is a skew-symmetric (n -k - I)-linear function on V with val- 
ues in the space of (n - k)-linear skew-symmetric functions on V. Moreover, it is symmetric 
with respect to v and w, i.e. 

(VI.. . . , UklwI, . . . . Wk) = (WI. . . . . wklul, . . . . I&) (2.14) 

and skew-symmetric with respect to variables u;‘s as well as wi’s. If I = (it, . , if,) is 
a sequence of integers such that it < . . . -c i,, then (u. uj)l stands for the sequence of n 
elements of V such that its sth term is u, ifs E I and w, otherwise. A similar meaning has the 
symbol(tr1, u)~.Forexample,ifk = 5andZ = (1,3),then(u. W)I = (ut, UQ. ug. ~4. ~15). 
(w, u)~ = (u/r. ~2. ~3, ~4, us). Define now the following quadratic function: 

c(Ul,. . , Uklwl,. . . , wk) = c ((U, W)tl(w, VI,). (2.15) 
I.r,=l 

Proposition 2.4. For any UI , . . , uk, WI,. . , wk E V, n > k. it holds 

c(ul, . . , Uklwl,. . . , Wk) = 0. (2.16) 
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Equality (2.16) is called the kth order compatibility condition. 

Remark 2.3. Corollary 2.1 is identical to (2.16) for k = 1 while formula (2.13) to (2.16) 
fork = 2. 

Proof of Proposition 2.4. It goes by induction. Corollary 2.1 allows to start it. Supposing 
then the validity of (2.16) for k for all multi-Lie algebras, we observe that 

c(xl,...,xk,u~y]....,~k,u)=o (2.17) 

foranyxt,..., xk, ~1, . , yk, u E 1/. In fact, this condition coincides with the kth order 
compatibility condition for (n - I)-Lie algebra P,, . In particular, 

C(Vl,.. . t uk, uk+I +wk+l Iwl...., Wk, uk+l + Wk+l) =o. (2.18) 

On the other hand, it is easily seen that 

C(Ul,..., uk, uk+l +wk+l lwl, . . . . wk+ uk+l + wk+l) 

= 
c (cut w)I, uk+l +wk+lI(w, v)Iq uk+l + wk+l), 
/.il=l 

where (u, w)~ has the same meaning as in (2.15) and ((v, w)~, X) denotes the sequence 
that becomes (u, w)~ once the last term x is deleted. Multi-linearity of the symbol (. . . 1 . . .) 
allows to develop last expression as the sum of terms of the form ((u, w) I, x 1 (w , u) 1, y) 
with X, y taking independently the values ukft , wk+] . After that it remains to observe that 
the kth order compatibility condition for the algebra P, gives 

c ((u, W)f, xl(w, U)/, x) = 0 (2.19) 
I,i,=l 

and 

= 
c ((u, w)It ~k+ll(wt u)Iq wk+l) 

I,il=l 

+ C(( U. W)\Y wk+ll(w, VII, uk+l). ??

I,if=l 

Example 2.6. The explicit form of the third compatibility condition is 

C~~P(PY~.U~.U~, PuJ,.IB,,Iu,) + Comp(PU,,,z,w3, PLu,,U,z,U3) 

+C~~P(PU,,UI,,U,, PY,,,.,,) + Comp(PU,,,,,,,, PU,,,Uz,u,) = 0. 

The second order compatibility conditions provide some necessary conditions for the 
following natural question: 

Whether two given n-Lie algebra structures Q and R come from a common (n + 1 )-Lie 
algebra structure, i.e. whether Q = P,, R = P, f or an (n + I)-Lie algebra P and some 
u. 2, E V? 
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Corollary 2.2. lfn-Lie algebra structures Q and R are$rst order hereditaqfiwan (n + I)- 
Lie algebra, then 

Cow(Q,,.. R,) + Comp(Q;, R,,,) = o vl~‘, : E v. (1.20) 

3. n-Poisson manifolds 

The concept of n-Poisson manifold generalizes that of Poisson one (n = 2) just in the 
same sense as n-Lie algebras do with respect to Lie algebras. It was introduced by Takhtajan 
in [23]. Filippov [7] in his pioneering work gives an example (see Example 3.1) which turns 
out to be locally equivalent to the general concept in virtue of an analog of the Darboux 
lemma for n-Poisson structures. This analog was found recently by Alekseevsky and Guha 
] 11. Below we present a simple purely algebraic proof of it which is valid in more general 
algebraic contexts, for instance, for smooth algebras. Since n-Poisson structures are special 
kind of n-Lie algebra ones we can use freely results of Section 2 in this context. 

Definition 3.1. Let M be a smooth manifold. An n-Lie algebra structure on Cm(M) 

(fl. . . .A) + {.fl, . . . , ./;,I E C3”W), .f; E P(M) (3.1) 

is called an Jt-Poisson structure on M if the map 

.f‘-+ {.f,....) 

is a derivation of the algebra C30 (M). 

Last condition means Leibniz’s rule with respect to the first argument 

{.f’g.111.. . . . h,,-11 = .fk. hl. ..h,,-11 +g{.f;hl. . . . .h,,-I). 

(3.2) 

(3.3) 

Evidently, due to skew-symmetry, Leibniz’s rule is valid for all arguments 
An equivalent way to express this property is to say that the operator 

xf. I..... f,,-, : C”(M) -+ Cm(M) (3.4) 

defined as 

Xf I...... f,,_, (R) = lfl 7 . . 1 .$-I 1 I:] (3.5) 

is a vector field on M. Such a field is called Hamiltonian corresponding to the Hamiltonian 
,function.s ,fl , . . . , ,fn-l. 

A manifold supplied with an n-Poisson structure is called n-Poisson or Nambu-Poisson 
marCfold. It is natural to interpret a vector field on M as a l-Poisson structure on it. 

Vector fields on M that are derivations of the considered n-Poisson structure are called 
canonical (with respect to it). As in the classical case n = 2 Hamiltonian fields of an 
n-Poisson structure are, obviously, canonical fields. 
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Let M and N be n-Poisson manifolds and { , )M and { , }N be the corresponding brackets. 
A map F : M + N is said to be Poisson if 

lF*(fi). . . . , F*WIM = F*Wi, . . ., .fnl~) Vfi, . ., .fn E Cm(N) (3.6) 

Example 3.1 [7]. Let XI, . . , X, be commuting vector fields on M. Then 

vi,..., .fnI = det IlZ(fj>ll (3.7) 

is an n-Poisson structure on M. More generally, if A is a commutative algebra any set 
of iz commuting derivations of it defines an n-Poisson structure on it. Note also that the 
so-defined n-Poisson structure is invariant with respect to a unimodular transformation of 
fields Yi = cj SijXj, det IJsijlI = 1, Sij E Cm(M). 

More generally, if [Xj, Xk] = cjkXl, cjk E l?‘(M), then we have {f), . . . , fn) = 
det 11 Xi (fj) 11 is an n-Poison structure on M. 

n-Poisson structures are multi-derivations, i.e. multi-linear operators on the algebra 
COO(M) which are derivations with respect to any of their arguments. This is a particu- 
lar case of the general concept of multi-differential operator on Cm(M) (more generally, 
on a commutative algebra A [25]). It means that for any i = 1,2, . . , k the correspondence 

f + A(fi,..., fi-l,.f,fi+l?...,.fk) (3.8) 

is a differential operator for any fixed set of functions fl, . . . , fi-1, fi+l, . . , fk. When 
dealing with multi-differential operators and, in particular, with multi-derivations we will 
adopt the notation of Section 2. For instance, we write fJ or zf for the insertion operator, so 
that if A is a k-differential operator, then fJ A = zf (A) = Af are three different notations 
for the (k - I)-differential operator 

(flA)(gl, . . . > a-1) = AU, RI,. . . , g&-i). (3.9) 

Note the one-to-one correspondence between k-contravariant tensors T and k-derivations 
A given as 

dfkJ . . .1 dfil T = T( dft , . . . , dfk) = 4.~5, . . . , fk). (3.10) 

If, moreover, T is skew-symmetric, then it is a k-vector. In particular, an n-Poisson structure 
can be given either by a skew-symmetric n-derivation, or by the k-vector corresponding to 
it 

The mentioned one-to-one correspondence between skew-symmetric multi-derivations 
and multi-vectors allows to carry well-known operations from the latters over the formers. 
For instance, the standard wedge product of two multi-vectors allows to define the wedge 

product of the corresponding multi-derivations A and V as 

(A A V)(fi, . ., h+l) = C(-I)“hA(f,)V(fi). (3.11) 

where I = (il, . . . , ik), 1 5 il 5 . . 5 ik ( k + 1, is an increasing subsequence of 
integers, f is its complement in [ 1,2, . . . , k + I), (Z, I) is the corresponding permutation of 
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1. 2. . , k + 1, (-l)“,i) stands for the sign of it and ,f~ (respectively ,f)) is a shortnoting 
fori;,, . . . , ,f;:, (respectively ,fr, . . , fi,). Moreover, definition (3.11) makes sense, in fact. 
for arbitrary multi-differential operators, not necessarily derivation, and therefore, defines 
an associative and graded commutative multiplication over them. 

The Schouten-Nijenhuis bracket carried over multi-derivations looks as 

[A. Vl(.f~. . . .fk+/-I) = c (-l)“,“A(f;. v(,fr)) 
Ill=k-I 

-c (-l)(J%(A(fj) f-, ' .I' (3.12) 
IJl=h 

where I and J stand, as before, for increasing subsequences of ( 1.2, . , k + I - 1) while 
I I I (respectively, 1 J I) denotes the length of I (respectively, J). Similarly to (3.1 1 ), formula 
(3.12) remains meaningful for arbitrary skew-symmetric multi-differential operators and 
this way the Schouten-Nijenhuis bracket is extended on them. More exactly, defining the 
Schoclten grading of k-differential operators to be equal to k - I, we have: 

Proposition 3.1. The Schouten graded .skew-symmetric multi-d#erential operators sup- 
plied with the bracket operation (3.12),fotm a graded Lie algehrtr. i.e. 

[A. V] = -(-I)‘“-““-“rV, Aj (3.13) 

(graded skewsymmetry) and 

(_~)‘“-“‘“-I~ [A. [V, ??J] + (-I)+‘)(‘-‘)[0. [A. VA] 

+(-I)(~-~~~L-~)rv. p. A~J = 0 

(graded Jacobi ident@). 

Prooj: Graded skew-commutativity is obvious while the graded Jacobi identity is checked 
by a direct but tedious computation. cl 

Corollary 3.1. The well-known compatibility condition [A. V J = 0 of two Poisson stru- 
tures A(.f. g) = (,f, g)l and V( f, g) = { ,f, g}lr is in the considered context identical to the 
one given in the preceding section. 

Proqf Just to compare (2.10) for n = 2 and (3.12) fork = 1 = 2. 0 

Remark 3.1. It is worth to emphasize that the Lie derivative of a multi-vector V corre- 
sponds in the aforementioned sense to the Lie derivative of the multi-derivation A associated 
with V in the sense of the previous section. In particular. the fact that V is an n-Poisson 
multi-vector can be seen as 

Xf, ,...., /;,-, (VI = 0, (3.14) 
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where X(V) is a short notation for the Lie derivative Lx(V) of V we shall use to simplify 
some formulae. Similarly, the compatibility condition of two n-vectors V and W can be 
written in the form 

Yf I...., f”_, (VI + x, I,.... fn-, (W = 0 (3.15) 

where Xf, ,,,., fnm, and Yf, .,._, f;,_, are Hamiltonian vector fields with the same Hamilton 
,functions fl , . . . , ,fn_l with respect to Poisson structures given by V and W, respectively. 

A function g E Cm(M) is said to be a Casimir.function if 

Xf I..__, f,>-, (8) = Ifi 3 . . . 9 .6-l, g) = 0, Vf’l, . .1 .fn-1 E COO(M). (3.16) 

All Casimir functions form, evidently, a subalgebra K of I?‘(M). We denote it also by 
Gas(P) when it becomes necessary to refer to the n-Poisson structure P in question and 
call it the Casimir algebra. An idea1 Z of the Casimir algebra allows to restrict the original 
n-Poisson structure to the submanifold (possibly with singularities) 

N = (x E M j ,f(x) = 0. f E Z) c M. 

To see this note that 

(3.17) 

Cm(N) = Cm(M)/ZCm(M) (3.18) 

if N is a submanifold without singularities. Otherwise, define the smooth function algebra 
on N by means of (3.18). Further note that the idea1 2* = ICOO C Cm(M) is stable 
(with respect to the n-Poisson structure in question) in the sense that (fl , . . . , fn_l, g) E I* 
if g E Z*. This allows one to define the restricted n-Poisson structure on N just by passing 
to quotients 

{.K . . . . .ZlN = I.fl> :, .fnl, (3.19) 

where 3 = f; (mod Z*). From a geometrical point of view the stability of Z* implies that 
Hamiltonian vector fields are tangent to N. The smallest such submanifolds N correspond 
to the largest, i.e. maximal, ideals of K. Since any non-wild maximal ideal of K is of 
the form Z = ker G where G : K + R is a R-homomorphism of unitary R-algebras 
it is reasonable to limit our considerations to these ones. Denote by NG the submanifold 
of M corresponding to the ideal Z = kerG and recall that all R-homomorphisms of K 
constitute a manifold (with singularities) Spec&, the real spectrum of K, in such a way 
that K = COO(Spec&). We shall call it the Casimir manifold of the considered n-Poisson 
structure and denote it by Gas(M) or Cas( P) depending on the context. Then the canonical 
embedding K 5 Cm(M) induces by duality the Casimir map 

Gas : M + Gas(M). (3.20) 

By construction NG = Gas-‘(G). This way one gets the CasimirJibration of M whose 
fibers are n-Poisson manifolds. In the Casimir fibration is canonically inscribed the Hamilto- 
nian,foliation which is defined as follows. First, note that the commutator of two Hamiltonian 
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fields is a sum of Hamiltonian fields. In fact, formula (2.7) in the considered context looks 
as 

IXf I...... f+, - x, I...., fi ,,-_I 1 = c x, I..... { f] . . f,,_t.,s,l..... gtz , (3.21) 

This implies that the COO(M)-module H(P) of vector fields generated by ail Hamiltonian 
ones is closed with respect to the Lie commutator operation. It defines. therefore. a (singular) 
foliation on M called Hamiltonian. It was already mentioned that Hamiltonian fields are 
tangent to submanifolds NG . Hence. any Humiltoniun leqf, i.e. that of the Hamiltonian 
foliation, belongs to a suitable Casimir submanifold NC. So. Casimir submanifolds are 
foliated by Hclmiltonian leaves. 

Example 3.2. Let T ‘I+’ be the standard (n + I)-dimensional torus with standard angular 
coordinates HI, 02. . . , f&+1. Consider the n-Poisson structure on it defined by vector fields 

a 
xI = jg +k$xz = &, ,.,. x,, - 

I 2 a%,+ I 

(3.22) 

as in Example 3.1. Then for a rational h Cas( 7”‘+’ ) = S’ and the Casimir map Crrs : 
T”+’ + S’ is a trivial fiber bundle with T” as a fibre. In this case fibres of the Casimir map 
are identical to leaves of the Hamiltonian foliation. If A is irrational, then Crrs(T”+ ) is 
just a point which is equivalent to K = R. In other words, Tnf’ is the unique submanifold 
of the form NG. On the other hand, the Hamiltonian foliation in this case is n-dimensional 
and its leaves are copies of R” immersed everywhere densely in T”+‘. 

Since Hamiltonian vector fields are, by construction, tangent to the leaves of the Hamil- 
tonian foliation, the Poisson multi-vector of the considered Poisson structure is also tangent 
to them. For this reason on any such leaf there exists a unique n-Poisson structure such that 
the canonical immersion L L, M becomes an n-Poisson map. In Section 4 it will be shown 
that Poisson leaves are either n-dimensional (regular), or O-dimensional (singular) if II > 3 
what is in strong contrast with the classical case n = 2. By this reason n-Poisson structures 
on n-dimensional manifolds are to be described. We will get it as a particular case of the 
following general assertion. 

Proposition 3.2. Let P be an n-Poisson structure of rank n on a manifold M. Then,for 
any ,f E C?(M), ,f P is an n-Poisson .structure and an? tww structures of thi.s,fiwm (ire 
compatible. 

Proqf It is based on the general formula 

Lf.x(Q) = ,fLx(Q) -X A (.fJQ) 

for any ,f E Cm(M) , X E D(M) and a multi-vector Q on M (see, for instance, (21). By 
applying it to X = P~,,.,.J,_, and Q = gP, g E COC(M), and taking into account that 

ph, ._... h,,-, (P) = 0 one finds 

(f’P)h,.... ./I,,_, (RP) = .f Ph I,.... h,,_, (g)P - Ph I..... h,,_, A (I:Pf.). (3.24) 
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This formula allows to rewrite the compatibility condition (2.10) for f P and gP as 

(ff% I..... h,_, @PI + km I,..., It,,_, UP) 
= f‘Ph I..... h,_, (g)P + RPh I,.... h,,_, (f)P - Ph I..__, If,-, A kqf + fPg) 
= ph I,..., h,_, (fg)p - ph ,,..., h,_, A ((fS>lp) = (fg)j(Ph ,I__., h,_, A P)P 

It remains to note that Ph,,...,h,,_, A P = 0 for a multi-vector of rank n. 0 

Corollary 3.2. Any Frobenius n-vectorjield V on a manifold M is an n-Poisson one. In 
particular, such are n-vectorjelds on an n-dimensional manifold M. 

Proofi Since V defines an n-dimensional distribution (with singularities) on M it can be 
locally presented as V = hX1 A . . . A X, for a suitable h E Cm(M). But X1 A . A X, is 
just the Poisson structure of Example 3.1 and, so, V is also an n-Poisson structure in virtue 
of Proposition 3.2. 0 

4. Decomposability of n-Poisson structures 

In this section we prove a result which, in a sense, is an analog of the Darboux lemma for n- 
Poison structures with n > 2. It tells that the rank of a non-trivial Poisson n-vector is equal to 
n and, therefore, such an n-vector is locally decomposable. This was conjectured by Takhta- 
jan and proved recently by Alexeevsky and Guha [ 11. Our approach is, however, quite dif- 
ferent. We start with collecting and recalling some elementary facts of multi-linear algebra. 

Let U be a finite-dimensional vector space. Denote by Ak (V) its kth exterior power and 

Put 

V ‘I, ,.... (I, := a/J ...J al] V E Ak-‘(V) (4.1) 

forVEAk(l/)andat,...,a,EV*. 
The following is well-known. 

Lemma 4.1. A non-zero k-vector V E Ak(V) is decomposable, i.e. V = UI A . A uk, 
for some vi E V, @it is of rank k. 

Vectors ui ‘s are defined uniquely up to a unimodular transformation u; + wi = cj c;j uj 

The subspace of 1/ generated by VI, . . . , uk coincides with that generated by all vectors of 

the form V,, ._.., ak-, E V . 
Recall also the following lemma. 

Lemma 4.2. If v A V = 0, v E V, V E Ak(V), then V isfactorized by v, i.e. V = v A V’ 
,for a V’ E Ak-’ (V) 

Together with Lemma 4.1 this implies the following. 
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Lemma 4.3. A k-vector V is decomposable [ff 

V 0 I,,.., u-, A V = 03 vu\...., Uk-1 E v*. 

Lemma 4.4 (on three planes). Let l71, I72, l73 be (k - 1)-dimensional subspuces of V .ruch 
thut dim(l7, n l7i) = k - 2 for i # j. If k > 2, then 
- the span 11 of ill , l72. ILL’3 is k-dimensional, 
_ any (k - I )-dimensional subspace l7’ of V intersecting each of f7; ‘s along CI not less 

thun (k - 2)-dimensional subspace belongs to ll. 

ProoJ Obvious. 0 

Proposition 4.1. Let V be a k-vector, k > 2. lf 

v c1.c I...., <‘i_Z A VtJ + Vh.c I,.... (‘k-2 A v,, = 03 vu, b. (‘I.. . . Ck-2 E v”. (4.2) 

then V is decomposable. 

Proqf: By putting u = b in (4.2) we see that W,., ,,,,.L’i_? A W = 0 for W = V,, Therefore. 
according to Lemma 4.3, the (k - I)-vector V, is decomposable Va E V*. 

Denote now by I7, the (k - I)-dimensional subspace of V canonically associated. ac- 
cording to Lemma 4.1, with the decomposable (k - I)-vector V,, assumed to be different 

from zero. If VU.,., . ..,, ck_2 A Vh = 0 for all Cl, . , (‘k-2 E V*. then fl, = fib as it re- 
sults from Lemmas 4.2 and 4.1. If, otherwise, V,,.,., . . . ..._? A Vt, # 0 consider the subspace 
I7 associated according to Lemma 4. I with the decomposable k-vector V,,,,., ,,,,,ci 2 A Vh. 
Obviously. I7 1 n,. 

On the other hand, equality (4.2) shows that I7 coincides with the subspace associated 
with the decomposable k-vector Vh,r.,..,,,ck_r A V,, = 0. By this reason I7 1 n,, and, 
therefore, dim(n, n I7h) > k - 2 > 0. Moreover, if Vrr./, # 0, then dim(I7, n I7/,) = k - 2. 
In fact, dim(n,, f? nb) = k - I implies that n,, = I7b and. hence, V,, = h.Vh. Hence. 
Vcr,h = hVt,,f, = 0 which is impossible. 

Observe. finally, that since V # 0 and k ? 3 there exist u. b. c E V* such that 
V c,.h.c. # 0. In such a situation (k - 2)-vectors Vu.h, Vb.(. and V,,,,. are different from 
zero. Hence, as we have already seen previously, mutual intersections n,,, l7h and l7(. 
are all (k - 2)-dimensional. So, these three subspaces satisfy the hypothesis of Lemma 
4.4. By this reason the span I7 of them contains all subspaces nd, d E V*, and conse- 
quently all derived vectors Vd,d,...,,t_z belong to I7. Now Lemma 4. I implies the desired 
result. n 

Our next task is to show that the hypothesis of Proposition 4.1 is satisfied by any n-Poisson 
multi-vector. First, we need the following property of Lie derivations. 

Lemma 4.5. Let X E V(M) and f E C”(M). For a multi-derivation A it holds 

Lfx(A) = fLx(A) - X A Af. (4.3) 
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Proo$ By the definition of the Lie derivative we have 

Lf.x(A)(gl> . . . .gn) = .f’x(Ak~, . ., gn)) - C Akl,. . . . .fX(gi)t.. ., gn) 

=f(X(A(glt ... ,gn) -CA(gl,. . . + X(gi), . ..gn)) 

- C(-l)“X(gi)A(ft glt . .) gn). 

It remains to note that last sum is just the product X A Af evaluated on gl , . . , g,. 0 

Next identity is basic. 

Proposition 4.2. Let A be an n-derivation. Then for any f, g, $i E Cm(M) it holds: 

Afg.@ I,..., &,,mz(n) = fAg.+ ,I.... 6+2(o) 

+gAf,~ I..... 4,,_>(n) - Af:# I...., #n-z A 0, 

- A,,4 ,..... +,,I+? A ??f. (4.4) 

Proof First, note that Afg = fA, + gdf. So one has 

Afg,4 ,...., +,,-r(o) = VA,,, I,.... $,-z)(n) + (RA~,# ,,.... ~,,_r)P). 

On the other hand, by putting Y = Af.+, ._._, ,#+_?, Z = A,,@ ,.__., #nmz and applying Lemma 
4.5 one finds 

Aj.g.4 I...., qt+n-z (Af) = (L,Y + LfzP) 

=gLvW + fLz(U) - Y A 0, - z A ??,f. 0 (4.5) 

Corollary 4.1. !f A is an n-Poisson structure, then for any f, g, @i E C?‘(M) it holds 

Af,q+ I..... ~2 A A, + A,,$ ,,..., @n-z A Af = 0. (4.6) 

Proot Formula (4.4) for an n-Poisson A, and 0 = A is reduced, obviously, to (4.6). 0 

Remark 4.1. Formula (4.6) for n = 2 becomes empty. We mention also the following 
particular case of (4.6) for which g = f: 

A K.+I,....@+z A A, = 0. (4.7) 

Theorem 4.1. Any non-trivial n-Poisson n-vector V is of rank n ifn > 2. 

Pro05 Formula (4.6) can be rewritten as 

(d&-lJ . ..J d4lJ dfJv> A (dgl VI 
+(d&i . ..JWlJ dgJ V1Atd.fJ VI =O. 
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Evaluated at a point x E M it ensures the hypothesis (4.2) of Proposition 4. I for the n-vector 
V, over the tangent space V = T,M. Therefore, v, is of rank n or otherwise identically 
equal to zero. c 

Corollary 4.2. For II > 2 regular leaves of the Hamiltonian ,foliation of an n-Poisson 
man@ld are n-dimensional. Its singular leaves are,ju.st point.v. 

Remark 4.2. Since an n-dimensional foliation can be given by means of n commuting 
vector fields in a neighborhood of its regular point. Example 3. I exhausts regular local 
forms of n--Poisson structures for n > 2. 

Another eventually very important consequence of Theorem 4. I is that the Cartesian 
product of two n-Poisson manifolds is not in a natural way such a one if II > 2. In fact. 
there is no natural way to construct an n-dimensional foliation on the Cartesian product of 
two manifolds supplied with such ones. 

Theorem 4.1 shows n-Poisson structures for n > 2 to be extremely rigid what implies 
some peculiarities going beyond the binary based expectations. Below we exhibit two of 
them: no Cartesian products and no (in general) n-Poisson structure on the dual of an PI-Lie 
algebra. 

First, note that given two n-vector fields P and Q on manifolds M and N. respectively. 
their direct sum P @ Q which is an n-vector field on M x N is naturally defined. 

Corollary 4.3. lf P and Q are non-trivial n-Poisson \gec.tor,fields, then P @I Q is not ~1 
n-Poisson one,for n > 2. 

Proc?f: Just to note that rank( P @ Q) = rank(P) + rank(Q). 0 

This result can be also proved by a direct computation. 
Second, given an n-Lie algebra structure [.. . . , .] on V one can try to associate with it 

an n-Poisson structure on its dual I/‘* just by copying the standard construction for II = 3. 
Namely, let xi. . . . , .rN E V be a basis. Interpreting x;‘s to be coordinate functions on V*. 
let us put 

T= C [~i,:...,.i,,I~A”‘~~. 
lsil <..xr,,iN II 111 

In a coordinate-free form the n-vector field T can be presented as 

(3.X) 

T(d.fl. . . dfn)(u) = [cL.fl. . . &f;,l 

with u E V” and ji E C”(V*) where the differential d, j; of ,j; at the point u is interpreted 
canonically to be an element of V. This n-vector field T is called associated with the n-Lie 
algebra structure in question. 

It is well known (for instance, [26]) that formula (4.8) defines the standard Poisson 
structure on V* when n = 2. However, it is no longer so when n r 2. 
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Corollary 4.4. Jf n > 2, the n-vectorfield T given by (4.8) is not generally an n-Poisson 
one. 

Proofi First, note that the n-vector field associated with the direct product of two n-Lie 
algebras is the direct sum of n-vector fields associated with each of them. Since, obviously, 
the n-vector field associated with a non-trivial n-Lie algebra is of rank not less than n, the 
n-vector field associated with the product of two non-trivial n-Lie algebras is of rank not 
less than 2n. Therefore, it cannot be an n-Poisson vector if n > 2. 0 

On the other hand we have: 

Proposition 4.3. Formula (4.8) defines an n-Poisson structure on the dual of an n-Lie 
algebra of dimension 5 n + 1. 

Prooj As it is easy to see any n-vector delined on a space of dimension 5 n + 1 is either 
of rank n or 0; so, under the hypothesis of the proposition T defines an n- or O-dimensional 
distribution on V*. Denote by A the n-derivation on V* corresponding to T as in (4.8). It 
suffices to show that 

Af ,I_._. .f;l-, (A) = 0 (4.9) 

for any system of polynomials fi (x) in variables Xk’s. We prove it by induction on the total 
degree S = deg ft + . . + deg fn_ 1 by starting from 6 = n - 1. 

To start the induction note that in the case all f;‘s are linear on Vi, i.e. elements of V, 
identity (4.9) is identical to the n-Jacobi identity of the original n-Lie algebra. 

To complete the induction it is sufficient to show that (4.9) holds for the system f’t = 
g/z, f2, . . fn- I if it holds for g, f2, . , fn_l and h, f2, . . . , &I. Taking into account 

thatA,h,f? ._..., f;,-, =x&f: .._.. f,,_, +hAg,fr ,..,, A,_, andLemma4Stheproblemisreduced 
to prove that 

A g,fi ,..., f;I-, A Ah + Ah,A . . . . . f,,_, A A, = 0. 

But since T is of rank n A,, ,.._, (o,,_, A A = 0 for any system qq, . . . , q+t E Cot 
we have 

(4.10) 

(v*). so 

h, 0 = h 1 (&.f- . . . . . h,_, A A) = A(K, f23 . ., .&-I> h)A - Ag,fz ,,... j;t-, A A 

so that 

A,,fi ,..., f,,-, A Ah = A&, fz, . . 3 fn-19 h), 

and, similarly, 

&.,f2 . . . . . f;l-, A Ag = A(h, f2, . . . 1 h-1 3 g). 

Hence, (4.10) results from skew-symmetry of A. 

Previous discussions lead us to conjecture that: 
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Ifn > 2 any n-Lie algebra is split into the direct product of a trivial n-Lie algebra and 
a number of non-trivial n-Lie algebras of dimensions n and (n + 1). 

In fact, this conjecture saves in essence the fact that an n-Lie algebra structure generates 
an n-Poisson structure on its dual (Proposition 4.3) in view of the resistance of n-Poisson 
manifolds to form cartesian products (Corollary 4.3) if II > 2. Also, at least to our knowl- 
edge, all known examples in the literature are in favor of this conjecture. 

Finally, mention an alternative (and also natural) way to save the dual construction by 
giving to the concept of n-Poisson manifold the duct1 meaning (see [27]). For fundamentals 
of this dual approach we send the reader to [ 191. A discussion of the Koszul duality can be 
found in [9. IS]. 

We conclude this section by answering the natural question: what are multiplicative 

compatibility conditions for two multi-Poisson structures, i.e. conditions ensuring that their 
wedge product is again a multi-Poisson one. 

Proposition 4.4. Let A and V be multi-Poisson structures on the manifold M whose 
multiplicities coincide with their ranks (for instance, they are of multiplicities greater thun 
2). Then A A V is a multi-Poisson structure on M iff [A. 01 = 0. AY,,.,,,RI_, (V) A V = 
0. Vt,,.....~,,_, (A) A A = Oforall gt, hj E C”(M), k and 1 denoting the multiplicities of A 
and V, respectively. 

Proof First. note the formula which is a direct consequence of the wedge product definition: 

(A A Wf,.....flv = x(-l, (k-~~i,(~-~~~)+(~.i)Ai, ,, ‘y,,. (4. I I ) 

where I runs all ordered subsets of [ 1, . , NJ and 1 II denotes the cardinality of I. In 
particular. for N = k + 1 - I we have 

(A A V)f,,....fi+,_, = c (-I)“-“A(fr)V,, + c (-l)‘+“,i’V(l.,‘)Ai,,. 
IIl=k //l=k-I 

(4.12) 

By applying Lemma 4.5 to f’ = A(ft). X = Vfi and taking into account that Vfi(V) = 0 
and Vti A V = 0 (V is l-Poisson of rank 1) we find 

(A(./i)V,~T)(A A V) = A(,ft)V,&A) A V - (-UkVlr A A A VA(fr, (4.13) 

and, similarly, 

(V(f;-)Af;)(A A V) = V(,fI)A A A.fi(W - Afi A Av(1;-) A V. 

Since A.I, A A = 0, then 

(4.14) 

0 = V(f))](Af, A A) = A(f/. V(fi))A - Afr A Aver,,. 

i.e. 

A/, A Av(.fi) = A(.ff, V(,fi)) (4.15) 
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and, similarly, 

Vfi A vA(f,) = v(_ff, AU/>). 

Now bearing in mind (4.12)-(4.16) we get 

(4.16) 

(A A V), I,..., fk+,_, (A A VI 

=c (-l)o%(f,~V~i( 1 A A V - V(f), A(f[))A A V) 
iI(=k 

+ c C-1) ‘+(‘+V(fi)A A Af (V) - A(fr, V(fr))A A V) I 
IIl=k-I 

= 
c 

(-l)“~“A(fI)V~,JA) A V + c (-l)““%(~~)A A A,(V) 
IIi=k JIl=k-1 

-(-1)'rA,Vl(fi,...,.fk+[-l) (4.17) 

(see (3.12)). If A A V is a multi-Poisson structure, then it is also a multi-Poisson structure in 
the dual sense defined in [ 191. But for such structures A A V is multi-Poisson iff rA, V] = 0. 
This shows that [A, V] = 0 is a necessary condition for the considered problem. 

Observe now that due to local decomposability of multi-vectors corresponding to A and 
V the product A A V is different from zero iff they are transversal to each other. This 
implies that the leaves of the corresponding Hamiltonian foliations intersect one another 
transversally. By this reason one can find k local Casimir functions of V, say f’) , . . . , fk, 
such that A(fl, . . . , fk) # 0 and 1 Casimir functions of A, say 6+1, . . , fk+l such that 

V(fk+l,..., fk+l) # 0. For such chosen J’s all summands of the first two summations of 
(4.17) vanish except one which is 

A(f), . .t fk)vfk+,,...,fk+,-,(A) A v. 

l-his implies Vfk+, ,___, fk+/-, (A) A V = 0, if A A V is (k + I)-Poisson. Observing then that 
local Casimir functions of both A and V generate in that situation a local smooth function 
algebra, one can conclude that 

V, I...., RI-, (A) A V = 0 (4.18) 

for any family of functions g) , . . . , g/-l. 
Similarly, it is proved that 

A, I,..., R,_, (V) A A = 0. (4.19) 

This shows that (4.18) (4.19) and [A, V] = 0 are necessary. The sufficiency is obvious 
from (4.17). 0 

5. Local n-Lie algebras 

In this section we discuss the most general natural synthesis of the concept of a multi-Lie 
algebra and that of a smooth manifold which is as follows. 
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Definition 5.1. A local n-Lie algebra structure on a manifold A4 is an n-Lie algebra 
structure 

(f’l..... .fn) + [_fl>...> .fnl 

on Coo(M) which is a multi-differential operator. 

Below we continue to use the operator notation as well as the bracket one for local n-ary 
structures 

A(.~‘I, . . . .t;l) = [.f’~. . . , .fnl 

and refer to the multi-differential operator A as the structure in question itself. 

Example 5.1. n-Poisson structures are local n-Lie algebra ones. 

A well-known result by Kirillov [ 111 says that for n = 2 the bi-differential operator 
giving a local Lie algebra structure on a manifold M is of first order with respect to both 
its arguments. An interesting algebraic proof of this fact can be found in [ IO]. Kirillov’s 
theorem is generalized immediately to higher local multi-Lie algebras. 

Proposition 5.1. Any local n-Lie algebru, n 2 2, is given by an n-differential operator of 
first order: i.e. of$rst order with respect to each qf its argument. 

Proof: It results from Kirillov’s theorem applied to (n - 2)-order hereditary structures of 
the considered algebra. 0 

Recall that usual Lie algebra structures defined by means of first order bi-differential 
operators are called Jacobi’s [ 11,12,16]. This motivates the following terminology. 

Definition 5.2. An n-Jacobi manifold (structure) is a manifold M supplied with a local 

n-Lie algebra structure on C?(M) given by a first order n-differential operator. 

Hence, in these terms Proposition 5.1 says that multi-Jacobi structures exhaust local multi- 
Lie algebra ones. Note, however, that it seems not to be the case for infinite-dimensional 
manifolds that occur in secondary calculus. Kirillov gives also an exhaustive description of 
Jacobi manifolds. 

Namely. Kirillov showed that a binary Jacobi bracket [. , .] on a manifold M can be 
uniquely presented in the form 

l.f> ~1 = T(d,f> dg) + fX(g) - sX(.f’) 

with X and T being a vector field and a bivector field, respectively, such that [T. Tj = 
X A T and Lx(T) = 0. Then two qualitatively different situations can occur: X A T = 0 
and X A T # 0 (locally). In the first of them the bivector T is a Poisson one of rank 0 
or 2. In the latter case X is a locally Hamiltonian field with respect to T, i.e. X = Tf 
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for an appropriate f’ E C”(M). If X A T # 0,then A4 is foliated (with singularities) by 
(2n + I)-dimensional leaves with 2n = rank T (an analog of the Hamiltonian foliation) and 
the original Jacobi structure is reduced to a family of locally contact brackets [ 12,161 on 
leaves of this foliation. 

Below we find an n-ary analog of Kirillov’s theorem for n > 2 showing that in this 
case only the first possibility of the two mentioned above survives. Fundamental here is 
a canonical decomposition of the first order skew-symmetric multi-differential operator A 
defining the local n-Lie algebra in question which we are passing to describe. 

Recall, first, that a first order linear (scalar) differential operator on M is a [W-linear map 
V : P(M) --f C”(M) such that 

V(fg) = P(g) + sV(f) - fsV(1) Vf> g E C=(M). (5.1) 

This algebraic definition is equivalent to the standard coordinate one [ 121. It characterizes 
vector fields on M, i.e. derivations of (Y(M), as first order differential operators V such 
that V( 1) = 0. Let A be a skew-symmetric first order n-differential operator. According to 
the adopted notation A 1 is an (n - I)-differential operator defined as A 1 (fl , . . . , fn_ 1) = 
A(l,ft, . . . . f,,_t). Obviously, it is of fi t rs or d er. Moreover, it is a multi-derivation. In 
fact, it is seen immediately from what was said before by observing that owing to skew- 
commutativity 

Al(l,. . .) = (Al)) = Al,] = 0. (5.2) 

If r is a skew-symmetric k-derivation, then the (k + I)-differential operator s(f) defined 
as 

s(f)(f’l* . . ., h+1) = ~w)‘-‘hmi,~ ..? “f-1, fi+1. . . . , fk+l) (5.3) 

is, obviously, skew-symmetric and of first order. Moreover, s(r) I = f. By applying this 
construction to r = Al we obtain the first order skew-symmetric n-differential operator 
A0 = s(A ’ ) such that (A’) 1 = A 1. Last relation shows that the n-differential operator 
A = A - A0 is an n-derivation. Now gathering together what was done before we obtain: 

Proposition 5.2. With any$rst order skew-symmetric n-dtJerentia1 operator A are associ- 
ated skew-symmetric multi-derivations A and A 1 of multiplicities n and n - 1, respectively, 
such that (canonicaldecomposition) 

A=A+A’ 

with A0 = s(Al), i.e. 

(5.4) 

A’(fi,... , fill = ~(-1)‘~‘fA(f,, . . . 3 h-1, fi+l,. . . , fn). 
i 

(5.5) 

Conversely, any pair (V, f) of skew-symmetric derivations of multiplicities n and n - 1, 
respectively, defines a unique skew-symmetric n-dtrerential operator of first order A = 



Lx(.~(n))(Rl. ,&'k+l) =X(~~(")(s!?I. . . . . Rk+l)) . 

-c S(o)(gl.....x(gi),....h'k+l). 

But 

XC~P)kl. . gk+l)) = . 3 c (-l)‘-‘X(gi)n(~l, , gi-1, gj+l, . . . Xk+l) 
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It is natural to extend the operation s from the skew-symmetric derivations to arbi- 
trary skew-symmetric multi-differential operators. Namely, if A is a skew-symmetric k- 
differential operator, then we put 

k+l 

s(A)(gl.. . .&+I) = c(--l)“g;A(g,, .~,pl. g;+l,. . , gkfl). 

i=l 

This way we get the map 

s : D@$ (M) -+ wr,‘,‘,, (M). 

D@$(M) denoting the space of Ith order O(M)-valued skew-symmetric k-differential 
operators on C30 (M). 

Proposition 5.3. The operation s is C?(M)-linear and s2 = 0. 

Proofi Obvious. 0 

Remark 5.1. Proposition 5.3 shows that s can be viewed as the differential of the complex 

0 + D@$(M) 5 Di#$(M) 4 . A D$f$(M) -; 

This complex is acyclic in positive dimensions and its 0-cohomology group is isomorphic 
to C30( M). In fact, the insertion of the unity operator i I is a homotopy operator for s as it 
results from Proposition 5.2. 

Further properties of s we need are the following. 

Proposition 5.4. The operation s has the properties: 
(1) !f X E D(M), then [Lx, s] = 0. 
(2) Jf ,f E C”(M), then fjs(CL) +s(,f]Cl) = ,fO 

(3) "(')f.l.....~f~ = Ci(-l)'-'.f,o,~~.....f,~~.f;+~.....,f~ + (-')ko(.fl. ... q .6). 

Prmf: We start with (1). 
For 0 E D$$(M) one has by definition 

+C(--l)‘-‘g;X(U(g,.....fii-,.R;+,. . . . . &+I) 



166 G. Marmo et al. /Journal of Geometry and Physics 25 (1998) 141-182 

and 

sO(g1, ...? xcgi1, . ..>&%+I) 

= (-l)i-‘X(gi)O(gl 3 . .3 &Z-l, Bi+l, . . .3 gk+l) 

+~w)j-'gj~(gl.... ,gj-l,gj+l,...,X(gi),...,gk+l) 

jci 

Therefore, 

LX(.~P)Kql, . ..3&+1) 

=c (-l)i-lgiX(O(gl 3 ...3gi-l,gi+l, . ..tgk+l) 

+ ~(-l)jelgj~(gl, . . . ,gj-l,~j+l,...,X(gi),...,gk+l) 
jci 

+ ~(-l)jplSjO(Slt~~~ 3 X(gi), . e. 3 gj-1, gj+l, . . . , gk+l) 

i4j 

= 
c (-1)i-‘Six(0>(g13 . . .3 Xi-1 3 gi+l, . . . , gk+l) 

Property (2) is an immediate consequence of the definition of s Finally, (3) is obtained 
from (2) by an obvious induction. 0 

We need also the following formula concerning Lie derivative, 

Lemma 5.1. Zf f E P(M) and 17 is a skew-symmetric k-derivation, then 

Lf(O) = (1 - k)fo - s(Of). 

where the Lie derivative Lf is understood in the sense of Section 2. 

Proo$ By definition 

Lf O(gl I . . 3 gk) 

= fO((g1, . . . 3 gk)-CO(gl....,fgi,...lgk) 

= .P(g13 .‘. 3 a) 

-~W(&.... gk)+&Ti"(g13...3 &T-l 3 ft gi+l,. .. 9 gk) 

= (1 - k)f ??(g, , . . , gk) + ~(--l)"gio(f~ gl,. . . , gi-I, Pi+1 . . .3 gk). 

But last summation coincides, obviously, with --s(Of)(gl , . . . , gk). 0 
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Proposition 5.2 suggests to treat the problem of describing n-Jacobi structures as deter- 
mination of conditions to impose on a pair of multi-derivations V and 0 of multiplicities 
n and n - 1, respectively, in order that the n-differential operator A = V + s( 0) be an 
n-Jacobi one. In other words, we have to resolve the equation 

(V + .W)).f‘,_...,, f,,-, (V + s(U)) = 0 (5.6) 

with respect to V and 0. So we pass to analyze Eq. (5.6). 
First, by applying Proposition 5.4. (3) and posing X; = Of. ,.,,, ,i ,,,, f _, and h = .i. ,I 

(-1)“-‘O(f”.....,f,,_~) onefinds 

~~(~)l.,.....f;,-,W) = C(-l)‘-‘(f;xi)(v) + L,,(V). 

The following expression is computed with the help of Lemmas 4.5 and 5. I : 

s(O),., , . . ..f;,_\ (V) = c (-I)‘_‘(,f,Xi(V) - x, A of;) + (1 - n)hV - S(Vh). 

(5.7) 

Similarly, taking into account Proposition 5.4 (I), Lemmas 4.5 and 5.1 and the fact that 
s(o)f ,...., /,1_, = Y + h with Y = c(-I)‘-‘.f,Xi E D(M) one finds 

W).f I...... f,l-, O(O)) 
= (Y + h)(sP)) = s(Y(U)) + (1 - n)hs(o) 

= ~~(~(-l)‘~‘,fiXi(n) - C(-l)‘-‘Xi A ??,f, + (1 -?l)hU). 

(5.8) 

Putting together formulae (5.7) and (5.8) we obtain the key technical result of this section. 

Proposition 5.5. Let V and 0 be skew-symmetric multi-derivations of multiplicity n and 
II - 1, respectively, then the canonical decomposition of the skew-symmetric k-d@erential 
operator 

w + .~(O))f I,___. f,,_, P + .sP)) 

is given by the,formula 

(v + S(o))f ,..,,., f,,_, (v + s(o)) = A’ + s(A’), 

where 

A’(.f’. . . .f,-I, = Yf ,.._., fn-, (V) 

n-1 

+ C(-I)‘-‘(,f,X;(V) - Xi A 0,;) + (1 - n)hV 
i=l 

and 



168 G. Marmo et al./Journal of Geometry and Physics 25 (1998) 141-182 

A’(fi, . . . 3 k-1) = of I,..., fk-, (0) - oh 

n-l 

+ x(-l)‘-‘(fiXi - Xj A ??f!) + (1 - ?Z)hO 
i=l 

Mdh xi = Of I,..., fr-,,fi+ I,.... f+,,h = (-u”-‘wl,~ .., .Ll) 

Corollary5.1. JfA + s(O)isn-Jacobian, thenforan~g~,...,g~_~ E P(M) 

q,,....,&,(V) = 0 and q,,.,.,,&~P) = 0 

In particulal; 0 is an (n - I)-Poisson structure. 

ProojI In virtue of Proposition 5.5 Eq. (5.6) is equivalent to 

A”(fi, . . . t h-1) = 0, &fL. ..,.fn-1)=0. 

It remains to note that 

A”(Lg,,... 1 gn-2) = q, .,..,&-* 0, 

A’(l,g~,... 7 gn-2) = q, ,_.., gn-2 (V). 0 

Put 

n-1 

A&l,. . . , fn-I) := V, ,,,__, fn_,(v) + ~(-l)“fi~(x~ A v), 

i=l 
n-l 

‘~(.f~~ ..,( .fn-1) :=Vfl,,,,.~n_,(o) + x(-l)“fi](Xi A 0) - Vh. 
i=l 

Corollary 5.2. If V + s(n) is an n-Jacobian, then 

A~(.h,...,.Lr) =0 and Ah(f~,...,f~_l)=O. 

Proo$ Corollary 5.1 shows that X; (0) = 0 and X; (V) = 0. Also we have 

(-l)‘-‘fiJxi = (-l)i-lfilOfj ,.._., f,-~,fr+l,___,, fn_l 

=(-l)‘-‘O(.f*~...~fi-l~fi+l,...,.fn-l,...,fi) 

= (-I)“-‘m(.fl, . . . , fn-]) = h. 

Hence, 

n-l n-l 

- C(-l)"Xi A Oh + (1 - n)hV = x(-l)" fiJ (Xi A 0). 
i=l i=l 

and 
n-l n-1 

-c(-I)‘-%; A Of, + (1 - n)hO = x(-I)‘-‘fij(xj A 0). 0 
i=l i=l 
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Proposition 5.6. (n - I)-dtfferential operators Ai and AA satisfy relations 

and 

- v,., I....., 5,,-: * % - vl/r..y I,...., q,,-? A 0, 

- (-W’O(cp. gj.. . g,,p~)V$ 

-(-WO(~.g:,.. 4 ?)V, “.< ,i-_ (5.9) 

A&$. XI,. . ., c-2) =cpA;W, XI.. . . g,,-2) + $A&. ~1,. . g,,-zl 

- v,.,q I..... g,,_: A VIII - VI//.,?, . . q,,_: A v,. (5.10) 

Proof: This is essentially the same as the proof of Proposition 4.2. One has to make 
use of the fact that the maps ,f F--+ V,f and .f’ I--+ ??f are derivations and to apply 
Lemma 4.5. 0 

Corollary 5.3. lf V + s(O) is n-Jacobian, then 

V V.Sl . ..-.x11+2 A VIJ, + V’I’I.,lJ, . . . . . . q,,_: A V, = 0. (5.12) 

Pronf Immediate from formulae (5.9) and (5.10) and Corollary 5.2. ??

Corollary 5.4. !f V + s( 0) is n-Jacobian, then the n-vector, corresponding to V i.s loc~~ll~ 
either of rank n (i.e. locally decomposable),for n > 2, or trivial. 

Proqf: Observe that Theorem 4.1 results from formula (4.6) which is identical to 
(5.12). cl 

Denote by V and W multi-vectors corresponding to V and 0. respectively. Let l7, 

and P., . .r E M. be subspaces of T, M generated by derived vectors of V, and W,, 
respectively. 

Proposition 5.7. If V + s(0) is n-Jacobian with n > 2. then rank(W_,) 5 II - I and 
P, c n, {ffv, # 0. 

Proof Relation ??g, ,,.,.K,,_2 (0) = 0 (Corollary 5. I ) implies 

cl ‘p.,q I..... ,q,,_j A V$l + q,, I...., p,,_j A V, = 0. (5.13) 
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This can be proved repeating literally the reasoning used above to deduce formula (4.6). In 
terms of multi-vectors relation (5.13) is equivalent to 

(dgrz-31 . . .I dmJ dvl W A (dlcrl VI + (da-31 . . .J dgll d$_l W A (dvJ VI = 0. 

(5.14) 

In particular, for q = $ we have 

(dK,z-31 . . .J dgll dvl W A (@_I VI. (5.15) 

By Lemma 4.2 (5.15) shows that the derived vector 

(d gn-31 ’ . .I dm 1 dqol WI 

divides dpj V. Since V is of rank n it divides also V. This proves the inclusion Px c J7,. 
Further, being W(n - I)-Poissonian (Corollary 5.1) runk(W) 5 n - I if n > 3. For 

H = 3 the inclusion Px c l7, shows that rank(W) 5 3 due to decomposability of V. But 
the rank of a bivector is an even number. So, rank(W) 5 2. 0 

Corollary 5.5. If V + s(n) is n-Jacobian with n > 2, then Xi A V = 0 and X; A ??= 0. 

Proof Xi is a derived vector of W and, due to inclusion Px c n,, is also a derived vector of 
V. It remains to observe that a decomposable multi-vector vanishes when being multiplied 
by any of its derived vectors. 0 

Corollary 5.6. [f V + s(O) is n-Jacobian with n z 2, then 

yt_ I..... fn_, (V) = 07 

of, ,.._., fn_, (O) = Vh 

In particular; V is an n-Poisson structure on M. 

(5.16) 

(5.17) 

Proof Immediate from Corollary 5.2. 0 

Below it is supposed that A = V + s( 0) defines an n-Jacobi structure on M with n > 2. 
A point x E M of that n-Poisson manifold is called regular if both multi-vectors V and W 
corresponding to V and 0, respectively, do not vanish at x. Note that the inclusion P, c J7, 
(Proposition 5.7) implies that x is regular if cl is regular at x , i.e. W, # 0. 

Now we can prove the main structural result concerning n-Jacobian manifolds with n > 2. 

Theorem 5.1. Let A be a non-trivial n-Jacobi structure and n > 2. Then in a neighborhood 
of any of its regular points it is either of the form A = V + s(Vh) where V is a non-trivial 
n-Poisson structure, or A = s(n) where ??is an (n - I)-Poisson structure (of rank 2 if 
n=3). 

Proof Corollary 5.1 and Proposition 5.7 show that 0 is an (n - I)-Poisson structure of 
rank 5 n - 1 on M while Corollaries 5.4 and 5.6 show V to be an n-Poisson one of rank n. 
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Hamiltonian foliations of these two multi-Poisson structures (we call them ??-foliaton and 
V-foliation, respectively) are regular foliations of dimensions n - 1 and n, respectively, in a 
neighborhood of a regular point a E M. Moreover. Cl-foliation is inscribed into V-foliation 
according to Proposition 5.7. So, if the neighborhoodU of u is sufficiently small, there exist 
a system of functionally independent functions y. ,- 1. . . . zm_,, . tn = dim M such that they 
all are constant along leaves of the o-foliation and ; 1. . ;,lr_,l are constant along leaves 
of the V-foliation. 

Since 0 is (n - I)-Poisson of rank II - I there exist (locally) mutually commuting 
vector fields XI, . . . X,_) such that 0 = X1 A A X,,_ 1. We can assume that X, E 
D(U). Then it is easy to see that there exist functions XI. . .x,,_) E C”(U) such that 
X; (x,) = S;j. Vector fields Xi’s are, obviously, tangent to leaves of El-foliation and. there- 
fore. Xi(y) = Xi(zj) = 0 Vj. By construction functions xl,. . , x,,-1. x. ;I.. . T,,,_,~ 
are independent (functionally). So they form a local chart in U in, maybe. smaller neigh- 
borhood of N. Now vector fields Xi’s are identified with (a/&;)‘~, partial derivations in 
the sense of the above local chart. Note also, that the vector field a/a.v is tangent to leaves 
of V-foliation. By construction the n-vector V is tangent also to these leaves. By this 
reason 

a v=+-&- 
I ax,, _ , 

with h. E C”(U). 
Observe now that i3/axi is a ??-Hamiltonian vector field associated with the Hamiltonian 

((-I)‘_‘x,.x-,. . . . ,x;_].x;+l.. . . ..Y,,_l) 
For this field relation ??g,,....,,r_2(V) = 0 (Corollary 5.1) becomes 

& +&A- ,( .’ 

a 

> 
= 0. 

I ahI 
(5.18) 

which is equivalent to ah/ax; = 0. This shows that h = h(v. r 1. . . . :m_rl 1. Hence. vector 
fields xl = a/ax,, . . . . X,-l = a/ax,_, , X,, = L(a/av) commute and, therefore, there 
exist functions ~1, . . . , yn E C”(U) such that X;(v;) = 6ij. i, j = I, . . , n. Obviously, 

functions vi,. . , .vn, ZI.. . . , zmen constitute a local chart with respect to which X, = 
a/ilvi. i = 1, . , n. Thus, we have proved that 

v=j+...“~, ??=Lr\...r\ a 
avl GI (5.19) 

.‘I _ ‘II 

It remains to note that 0 = V,, for h = (- l)‘l-’ yrl. This proves the lirst part of the 
theorem. 

To prove the second one we observe that if V = 0 in the canonical decomposition of A. 
i.e. A = s(O), Corollaries 5.1 and 5.5 show that 0 is an (n - I)-Poisson structure of rank 
n - 1. (In virtue of Theorem 4.1 last condition is essential only if n = 3.) On the other 
hand, one can see easily that when V = 0 any such Poisson structure satisfies conditions 
A’ = 0, A0 = 0 of Proposition 5.5. 0 
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Corollary 5.7. Jf M is an n-Jacobian manifold and n > 2, then in a neighborhood of its 
regular point a local chart y) , . , . , yn (21, . . . , z,,_~ exists such that 

+k(-l)kp'fkdet 
k=l 

where Ila,fi/afj Ilk is the (n - 1) x (n - I)-matrix obtained,from the n x n-matrix Ilaf;/ayy II 
by canceling its kth row and nth column. 

Proof: It results directly from (5.19) and the definition of S. 0 

Proposition 5.8. Let V be an n-Poisson structure of rank n on M and f E F’(M). Then 
A = V + s (V,f ) is an n-Jacobi structure. In particular; this is the case for any n-Poisson V 
with n > 2. 

Proof With the notation of Proposition 5.5 X; = Vf.,f ,..__,, f;-, ,h+ ,.,,,. fn_, and 0 = 0,. By 
this reason X;(V) = 0 as well as Vr, ,__.., f,_, (V) = 0. 

Therefore, the n-differential operator A’ (,fl , . . , fn-1) (Proposition 5.5) is reduced to 

~~&+lY.fiJ(Xi A V). Moreover, X; A V = 0 due to the fact that V is of rank n. 
Hence, in the considered context A ’ (f 1, . . . , fn_ 1) = 0. 

Next, X;(Vf) = 0 since Of is an (n - I)-Poisson structure. 
By applying formula (2.8) for S = V,~,.,..,J~, and u = f we see that for h = (-l)“-t O 

(fl, . . .1 fn-I) = (-WV(f, fl. . . . . fn-I) 

yf ,...., j;,-,(?f) - Vh = flv, ,,.... fn-, (v) = 0. 

So, the (n - I)-differential operator A’(f) , . . . , fn_1) (Proposition 5.5) is reduced to 
c;s;(-l)‘+fiJ(X; A Of). But V/ IS o VIOUS~Y, of rank 5 n - 1 and SO Xi A Of = 0. b 
Hence, A’( fi, . . , fn_ 1) = 0. It proves that A is n-Jacobian. Cl 

The construction of Proposition 5.8 can be generalized as follows. Let w be a closed 
differential form of order 1. For a multi-derivation V define another one V” by putting 
locally V” = Vf if w = df. This definition is, obviously, correct and allows to globalize 
Proposition 5.8. 

Proposition 5.9. Zf V is an n-Poisson structure of rank n, then A = V + s(Y) is an 
n-Jacobi structure,for any closed diferential l-form w. 

Proof It results directly from Proposition 5.8 and from the fact that the n-Jacobi identity 
for A is a multi-differential operator. 0 

Example 5.2. With notation of example 3.2 consider the (n + I)-Poisson structure 

a v+...+ 
1 afh 
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on (n + I)-torus T”+‘. Then VW with the closed but not exact on T”+’ l-form o = 
(Y d& - dH2 gives the n-Poisson structure described in Example 3.2. Therefore the (n + I )- 
Jacobi structure A = V + s(Y) on T”+’ is such that the leaves of its ??7fbliation are 
everywhere dense in the unique leaf, Tn+‘, of its V7foliution. 

It is not difficult to show that any n-Jacobi strucure with n > 2 on an n-dimensional 
manifold is of the form V + s(Y) for suitable closed I -form o and n-Poisson structure V 
on M. 

6. n-Bianchi classification 

In view of the conjecture of Section 3 on the structure of n-Lie algebras for II > 2 a 
classification of (n + I)-dimensional n-Lie algebras turns out to be of a particular interest. 
Such a classification, an analog of that of Bianchi for three-dimensional Lie algebras. is. 
in fact, already done in [7] by a direct algebraic approach. Below we get it in a transparent 
geometric way which, in addition, reveals some interesting peculiarities. 

To start with. observe that on an orientable (n + I )-dimensional manifold M any rt-vector 
P can be given in the form 

P=a]V 

with a I -form 01 = CYP. v and a (prescribed) volume (n + I )-vector field V on M, respectively. 
Obviously, cr] P = 0. This means that CY vanishes on the n-dimensional distribution defined 
by P. 

If P is an n-Poisson one, this distribution is tangent to the corresponding Hamiltonian 
foliation and as such is integrable. Therefore, (Y A da = 0. In virtue of Proposition 3.2 this 
condition is sufficient for P to be an n-Poisson vector field. 

Let us call an n-Poisson structure unimodular with respect to V if for any n-Hamiltonian 
vector field X Z,x(V) = 0. 

Proposition 6.1. An n-Poisson structure P is V-unimodulur $f dolp,l/ = 0. 

Proo$ Recall the general formula 

Lx(aJ V) = alLx(V) - Lx(a)1 V, (6.1) 

which holds for arbitrary vector field X, differential form a! and multi-vector field V. If X 
is a P-Hamiltonian field with P = a] V, then Lx(aj V) = 0 and (6.1) gives 

(YILx(V) = Lx(a!)lV. 

Since, also. Xia, = 0, Lx(a) = XJ dol and the last equality can be rewritten as 

div"X . P = (X] dol)lV (6.2) 

due to the fact that Lx(V) = divvX V. So, divvX = 0 + Lx(V) = 0 for any P- 
Hamiltonian field X if da = 0. 
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Conversely, (6.2) shows that Xl da! vanishes for any P-Hamiltonian held X if P is V- 
unimodular. This implies that Y] da = 0 for any Y tangent to the Hamiltonian foliation 
of P. Since this foliation is of codimension 1 any decomposable bivector B on M can be 
presented at least locally, in form B = Z A Y with Y as above. This shows that B] da = 0 
for any decomposable B and, hence, da = 0. 0 

Now we specify the above construction to the case M = V*, V being an (n + l)- 
dimensional vector space and P = T, T being the n-Poisson structure on V” associated 
with an n-Lie algebra structure on V. Also, we consider the (n + I)-vector held 

a vL&...+ 
axn+l 

on V where xi’s are some Cartesian coordinates on V”. Such an (n + I)-field is defined 
uniquely up to a scalar factor. So, the above concept of unimodularity does not depend on 
the choice of such a V and the l-form (zr,v is defined uniquely up to a scalar factor. Note 
also that or.c is linear in the sense that the function E1ar.c is linear on V”, i.e. an element 
of V, for any constant vector field 8. In coordinates this means that CQ-, Y looks as 

aT.V = c a;jxj dx;, Llij E I%. 

i.j 

Proposition 6.2. Algebraic variety of n-Lie algebra structures on V is identical to the 
variety of linear differential l-forms on V* satisfying the condition CY A da! = 0. 

ProofY It was already shown that any n-Lie algebra structure on V is characterized uniquely 
by the corresponding linear differential l-form (YT,c. 

Conversely, if a! is a linear differential 1 -form, then n-ary operation on Coo (V”) defined 
by the n-vector held crJ V is closed on the subspace of linear functions on V*, i.e. on V. This 
way one gets an n-ary operation on V. The condition (Y A da! = 0 guarantees integrability 
of the n-distribution on V* defined by P = CYJ V and by virtue of Corollary 3.2 it is an 
n-Poisson structure. This fact restricted on V shows the above n-ary operation to be an 
n-Lie one. 0 

Note now that any linear differential l-form on V* can be identified with a bilinear 2- 
form b on V*. Namely, denote by C, the constant field of vectors on V* which are equal to 
w E V* and put 

b(w, P) := (Cw_!o, P), w, P E V*, 

where bracket (., .) stands for a natural pairing of V and V*. Obviously, 

b(u, P) = C a;.jwipj 
i.j 

ifw = xwi(a/axi), p = cpj(a/axj) andcr = xaijxj dx;. SO, (laij(I isthematrixofb. 
The form b is called generating for the n-Lie algebra in question. 
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An n-Lie algebra is called unimodulur if all its inner derivations are unimodular operators. 
For an (n + I)-dimensional n-Lie algebra this is, obviously, equivalent to unimodularity 
of the associated Poisson structure T on li* with respect to a Cartesian volume (n + 1). 
vector V. On the other hand, T is V-unimodular iff daT,v = 0 (Proposition 6.1) and 
for a linear differential l-form CY the condition da = 0 is equivalent to cx = d F for a 
quadratic polynomial F on li* (or to symmetry of the corresponding bilinear form h). 
These considerations prove the following result. 

Proposition 6.3. The n-Poisson structure T on V” associated with a unimodulur Lie ulge- 
bra structure on an (n + 1 )-dimensionul elector spuce V is of thefiwm d FJ V fiw N suitcrblr 
quadratic polynomial F on V”. Therefore, all unimodular n-Lie structures on V are mutuull> 
compatible. Two such structures are isomorphic #the corresponding quadratic polyomi- 
als can be reduced to one another up to a scular factor by LI linear trunsf~ormutirm. In 
purticular; for k = R isomorphic c1a.s.se.s of unimodular (11 + 1 )-dimensional n-Lie .struc’- 
tures can be labeled by two numbers: r (the rank of F), 0 5 r 5 n + 1 and m (the maximul 
of positive and negative indices of F), :r ( m 5 r. 

Passing now to the case d(xT, v # 0 we note that daT, v is a constant differential Z-form 
on V* due to linearity of (LT,v. Moreover, the condition UT,” A daT,v = 0 shows that the 
rank of daT. I/ is equal to 2. Therefore, dCQ. \: = dxl A d-r? in suitable Cartesian coordinates 
on V*. Since UT,” divides dxl A dxz and is linear it must be of the form 

2 

c p;jXj dxi withp21 - ~12 = 1. 
i=l 

This is equivalent to say that dQ!T,v = dq + i(.rl dx2 - .Q dxl) with 

y = q(xl,x?) = &u,,xT + (p12 + p~I)-YIxz + p&). 

Note that unimodular transformations of variables do not alter the form of the skew- 
symmetric part of UT, v . So, by performing a suitable one it is possible to reduce y (.r 1, x2) 
to a diagonal form 

Further, transformations of the form (11, ~2) + (hyl, fh-‘yz) and the possibility to 
change the sign of UT,V allows to bring it to one of the following canonical forms: 

It I 2 2 I PA (n): oh d(z, f. z2) + ~(“1 dz - zzdzl), h > 0, 

‘J’I(~)::I dzl + ;(z, dzz -z2dzi), 

p(n): i(zl dz2 - zzdzl). (6.3) 

Proposition 6.4. n-Lie algebras corresponding to the I -f~~rrn ayT.v of the list (6.3) are 
mutually non-isomorphic and, thert$re, label isomorphic classes ofnon-unimodulrrr (n + I ) 
-dimensional n-Lie algebrus. 
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Proox Previous considerations show that any non-unimodular (n + I)-dimensional n-Lie 
algebra is isomorphic to one of the list (6.3). Two algebras of the type G**(n) corresponding 
to different h are not isomorphic since non-vanishing of the skew-symmetric part of or. v is 
equivalent to non-unimodularity condition. On the other hand, h is an invariant of isomor- 
phism type since 2/A is equal to the area of a (quasi-) orthonormal base of the symmetric 
part of or.” measured by means of its skew-symmetric part. Other types differ by rank or 
signature of the symmetric part. 0 

The classification we have got has an interesting internal structure. Namely, denote 
by B(n) the isomorphism type of (n + I)-dimensional n-Lie algebras corresponding to 
the generating polynomial i,$. Then any (n + I)-dimensional algebra can be seen as 
a “molecule” composed of B(n) and q(n) types of “atoms”. More exactly, the above 
discussion can be resumed as follows 

Proposition 6.5. Any (n + I)-dimensional n-Lie algebra can be realized as the sum of 
mutually compatible algebras each of them being either of type B(n) or of type 9(n). 

On the basis of the obtained classification it is not difficult to describe completely the 
derivation algebras of (n + I)-dimensional n-Lie algebras. 

A linear operator A : W -+ W is called an infinitesimal conformal symmetry of a bilinear 
form b(u. u) on W if 

b(Au, u) + b(u, Au) = tr(A)b(Ll, u). (6.4) 

Proposition 6.6. The Lie algebra of derivations of an (n + I)-dimensional n-Lie algebra 
coincides with the algebra of injinitesimal conformal symmetries of its generating bilinear 
form. 

Proq? A linear operator A on a linear space can be naturally interpreted as a linear vector 
field X on it. Moreover, tr(A) = div(X). Formula (6.1) for such a field X which is also a 
symmetry of (~1 V reduces to 

alLx(V) = Lx(a)] v. 

which is identical to (6.4). 0 

We omit a complete description of the derivation algebras which can be easily obtained 
by applying Proposition 6.5. Just note that inner derivations exhaust all derivations of an 
(n + I)-dimensional algebra iff the rank of its generating form is equal to n + 1. The 
following examples illustrate some features of outer derivations. 

Example 6.1. Consider the four-dimensional 3-Lie algebra corresponding to the generat- 
ing polynomial F = +x42. The associated 3-Poisson tensor is 



G. Marmo et ~1. /Journal qfGrometr?: and Physics 25 (19%‘) 141-182 

Clearly fields .xa(8/3xt), x4(8/8x2), x;r(a/ax3) form a basis of inner derivations. 
Proposition 6.6 shows that 

177 

are outer derivations not tangent to the Hamiltonian leaves of P. On the other hand, the 
following outer derivations 

are tangent to these leaves. 

Previous method used to get the n-Bianchi clussi’cution can be extended to inscribe 
into the n-ary context infinite-dimensional Lie algebras too. This is well illustrated by the 
following example. 

Example 6.2 (Witt algebra). The Witt (or s1(2. R) Kac-Moody) algebra is generated by 
r;, i E (0. 1.2. . .) according to 

[C;, til = (j - i)fJi+j_l Vi, j E N. 

Elements eo. e) . e2 generate a three-dimensional subalgebra isomorphic to s/(2. R). It is 
easy to see that the multiple commutator ok = [ez, . , [r?, ej]](k times) is equal to 
k!ey+x. So the elements eu. et. ez. e3 and ok. Vk E N constitute a new basis of the Witt 
algebra. 

Let us consider now the Poisson bracket on R3 given by PF with 

and 

F = ~1.~3 -x;. 

i.e 

Then we have the following ordinary Poisson bracket: 

(Xl. x2} = XI. {XI, X3) = 2x2, (X2, X3} = X3. 

So the correspondence 

[. . .1 ff ].. .I. eo ++ xl, 01 u x2, e2 ff x3 (6.5) 

is an isomorphism of Lie algebras. Moreover, this isomorphism of subalgebras can be 
extended to an embedding of the whole Witt algebra into the Poisson algebra (., .) according 
to: 
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[., .I++(.;), eof,xl, el *x2, e2++x3, 

1 
e3+k * - 1x3, . . . , 1x3, Sl). 

k! k-v-’ 
k times 

7. Dynamical aspects 

A Hamiltonian vector field X,y, ,,,,,H,_, associated with an n-Poisson structure can be 
called n-Poisson, or Nambu dynamics. The corresponding equation of motion is 

df 
- = xH,.Hz ,.... H,,_,f = (HI, H2, . . . . HeI, f). dt 

(7.1) 

An important peculiarity of a Nambu dynamics is that it admits at least n - 1 independent 
constants of motion, namely HI, . . . , H,,_ 1. Also such a dynamics admits n - 1 different but 
mutually compatible Poisson descriptions. The corresponding ith (usual) Poisson bracket 
and Hamiltonian are 

(f,s}i={H~,...,Hi-I,H~+I,...,H,-I,~,~J and (-l)“-‘Hi, 

respectively. 
So, the fact that a dynamics is a Nambu one can be exploited with the use. Below we give 

some examples of that. 

7. I. The Kepler dynamics 

Occasionally, a dynamical vector field r admitting 2n - 1 constants of the motion on a 
2n-dimensional manifold M is called hyper-integrable or degenerate. 

Iffl,.f2,..., fz,,_l are first integrals for r and f& E C?(M) is such that f (f2,) = 1, 
then the 2n-Poisson bracket 

Ihl,h,..., i,j E (1, . . . . 2n), (7.2) 

is preserved by f which becomes Hamiltonian with respect to (7.2) with the Hamiltonian 

function (fi, f2,. . . , fin-~>. 

Of course the corresponding 2n-Poisson vector is 

A=a/yar\...r\a 
a,fl af2 v2, . 

More generally the 2n-Poisson bracket 

i,jEl,..., 2n, 

(7.3) 

(7.4) 

is preserved by r iff F is a first integral, i.e. F = F(fl , f2, . . . , fzn_l). 
The Kepler dynamics illustrates such a situation. 
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Recall that the Kepler vector field, in spherical-polar coordinates (r, 0. ~0) in [w3 - (0) . 
is given by 

I (pi+ p;, a ,t+os@ 8 k ;) 
-- -- ~__ --- 

d sin2 N aPr r2 sin’ 0 apfi r2 8pq 

with (pr , pi, p+,) canonical conjugate variables. 
f is globally Hamiltonian with respect to the symplectic form 

(7.5) 

w=dp,r\dr+dp~r\d6,+dp,~dq 

with Hamiltonian H given by (see, for instance [ 141): 

(7.6) 

2 2 
pf+!??+_ pip k 

__ 
r- r2 sin’ H r’ 

(7.7) 

In action-angle coordinates ( JIT, cph ), h E (1,2, 3) (see, for instance, [22]), the Kepler 
Hamiltonian H. the symplectic form w and the vector field f become: 

mk2 
Hz- 

(Jr + Jo + Jvj2’ 
CO= c dJ/, A d& 

II (7.8) 

with v = 2mk2f(Jr + Jo + Jp)3. 
Functionally independent constants of the motion are: ,ft = Jl , .f2 = 52, fj = J3. ,fl = 

(01 - (P2> .h = ‘p2 - (P3. 

Now it is easy to see that (7.8) becomes 6-Hamiltonian with respect to (7.4) with F = u. 
so 

a@1 3 h2, h37 h4, h5~ h6) 
{hl.h2.hj,h4.hS,h61=vacJ, J2 33 cp, ‘p2 (p3) 

3 1 3 9 9 

provides us with a 6-ary bracket for the Kepler dynamics. 
In terms of this bracket, the equations of the motion look as 

d f 
- = ~{JI, 527 J3, ~1 - (~2, ‘~2 - (~3, .f’l. 
dt 

By fixing some of the functions h’s we get hereditary brackets 

7.2. The spinning particle 

(7.9) 

(7.10) 

Given a dynamics, i.e. a vector field r on a manifold M, it colud be interesting to realize 
it as a Hamiltonian field with respect to a Poisson structure [4]. Below it will be shown how 
multi-Poisson structures can be used in this connection. 
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We shall ignore the spatial degree of freedom of the particle and study only the spin 
variables. Let us treat the spin variables S = (St, S2, S3) as elements in R3. The equations for 
these variables when the particle interacts with an external magnetic field B = (Bt , B2, B3) 
are given by 

dSi 
- = /LLtijkSj Bk, 

dt 
(7.11) 

where p denotes the magnetic moment. 
This dynamics has two first integrals, namely, S2 = Sf + Si + Si and S B = S1 B1 + 

S2B2 + S3B3 and, in addition, is canonical for the ternary bracket associated with the 
3-vector field 

a a a -A-A-. asI as2 as3 
The most general ternary bracket preserved by dynamics (7.11) is associated with the 

three vector field 

(7.12) 

where f is a first integral of it. 
All Poisson structures obtained by fixing a function F = F(S2, S . B) are preserved by 

the dynamics and are mutually compatible. The corresponding Poisson bracket is 

Now we show how the ternary Poisson structure (7.12) allows for the alternative ordinary 
Poisson brackets described in [4]: 
- Standard description 

f=;, F=S’. 

For this choice the algebra generated by the Poisson brackets on linear functions is 
the su(2) Lie algebra. The Hamiltonian function for the dynamics is the standard one 
H = -pSB. 

- Non-standard description 
Now we take 

1 

-1 h 

with Hamiltonian H = -&Ss. Here for simplicity we have taken the magnetic field 
along the third axis. The parameter h is a deformation parameter and the standard de- 
scription is recovered for h t+ 0. 
The hereditary Poisson brackets are: 

(s2, s3) = s1, (sl> s3); = s2, 
1 sinh2hS3 

{sl, s2$ = 2 sinh* . 
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These brackets are a classical realization of the quantum commutation relations for gen- 
erators of the U, (s/(2)) Hopf algebra. 
We also notice that this Poisson Bracket is compatible with the previous one as they are 
hereditary from the same ternary structure (7.12). 

- Another non-standard description 
There is another choice for ,f and F which is known to correspond to the classical limit 
of the U, (s/(2)) Hopf algebra. 
It is 

.f’ = ;hS3, F = S: + S; f S_; + S;‘. 

It leads to the following brackets: 

With respect to this Poisson bracket dynamics (7.1 I ) becomes Hamiltonian with Hamil- 
tonian function 

H=- WB -In & 
h 

with the magnetic field along the third axis. 

Of course dynamics (7.11) admits many other Poisson realizations of this type. 
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